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Abstract

Spring loaded inverted pendulum (SLIP) is frequently used as a fundamen-

tal model to analyze and estimate human, animal and robotics locomotions. In

general, a locomotion motion is considered in two phases; flight phase , when

there is no ground contact, and stance phase , when there is a ground con-

tact. Due to the major difference of the phases (ground contact), dynamics of

the model is different. In flight phase, SLIP performs a ballistic flow and it

has a well known and analytically solved dynamics. However, due to gravity,

stance phase dynamics is much more complicated and it includes nonintegrable

terms. Several approximate analytical stance maps are derived by neglecting or

approximating gravity effect, especially symmetric gaits are studied since the

locomotion converges to symmetric trajectories for a constant desired motions

on flat surfaces. On the other hand, humans, animals and robots may need

to use various terrains (grass, rock field, etc) to survive. For these environ-

ments, converging a symmetric gait may not be possible and intuitively the

resultant gaits are always nonsymmetric. Moreover, to locomote on these ter-

rains without any trouble, several control strategies are needed to determine leg

touchdown angles and leg stiffness (or touchdown or liftoff leg lengths), which

are the control parameters for the SLIP template. Therefore, the approximate

stance map for nonsymmetric gaits and variable stiffness case becomes much

more valuable to perform motion planning and control of SLIP.

In this report, various gravity effect corrections for angular momentum,

named as total virtual gravity effect on angular momentum, are used to im-

prove the performance of previous studies on approximate stance map in which

gravity effects are approximated by small angle assumptions. Furthermore,

these maps are rearranged for variable stiffness for compression and decom-

pression phases. Finally, several performance analyses are done to examine the

results of approximate map with virtual gravity effect corrections and variable

stiffness.
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1 Introduction

Intuitively, legs are better than wheels and it is obvious because they have wider

range of different environment applications. In [5], Raibert summarizes advantages

of legged system compared to wheeled one with two reasons. One reason is that

mobility of legged systems is considerably better than vehicles with wheels because

legged robots can be used in difficult terrains where wheeled systems cannot travel.

The second one is that application areas of wheeled vehicles on the world are limited

with prepared arenas (e.g roads and rails) and some natural ambulatories. On the

other hand, legged robots can reach all the regions that animals can travel on foot.

One of the important primary studies on dynamical legged locomotion and balance

is done by Raibert. He used a one legged robot modeled as SLIP such that body

mass dominates leg and pneumatic leg structure behaves as adjustable spring. He

performed several simulations and experiments with different model based control

techniques for asymptotically stable locomotion and balance.In summary, Raibert

claims in his book that troting motion of a quadruped is similar to a biped locomotion,

a biped is similar to a monoped runner and control problem of a monoped is solved[5].

Similarly, Saranli and Koditschek used a model based controller for a hexapedal

runner, their lower dimensional model was a passively compliant biped [7].

In both studies, researchers were interested in stable forward running, and these

studies are valuable because humans, animals and robots mostly uses forward loco-

motions but not always . Especially, due to some critical events (e.g. an obstacle or

critical power level) stopping and backward locomotions can be desired. To perform

these motions in a safely manner, different new model based control algorithms are

needed, so more accurate state maps are necessary. Since any legged robot can be

modeled with a monoped runner, the simplest model, the analytical stance map of

a monoped runner is indispensable for real time application. However, Poincaré and

Whittacker showed that the stance dynamics of SLIP includes non-integrable terms

[4], [12]. Thus, several approximations and assumptions are done to derive the approx-

imate stance map for a monoped runner. One of the common assumption is ignoring

gravitational force, and the resultant dynamics becomes completely integrable, but

the performance of approximate map is not suitable for large sweep angles. Geyer

et al. have introduced another approximate stance map assuming small sweep angle,

small spring compression and constant angular momentum during stance phase and
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the approximate map has significant performance[3]. Also, Schwind and Koditschek

derived another approximate iterative stance map for a monoped runner by using

mean value theorem such that the performance of method is improved by increasing

iteration number [10].

Organization of the report begins with SLIP model and terminology. Secondly,

the details of these two approximation is given in Previous Studies section.Thirdly,

proposed virtual gravity effect corrections methods are introduced. Fourthly, applica-

tion of these stance map approximations and gravity corrections to variable stiffness

case is derived. In the following section, performance analysis and compression on

approximations is done. Finally, the study is summarized and a conclusion is drawn

with the open research topics.
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2 SLIP Model

2.1 SLIP Template

Spring loaded inverted pendulum (SLIP) is the simplest and fundamental template

to analyze dynamical locomotion of humans, animals and robots from biomechanics

and robotics perspectives. This model consists of a point mass that represents the

total mass of analyzed object located at the center of mass and a massless complaint

leg. During the stance phase, no slippage is assumed so when toe of the leg touches

the ground, there is assumed to be a frictionless revolute joint until the liftoff event

occurs. In Figure 1, SLIP template and illustration of a human runner with SLIP is

presented.

Figure 1: Left:SLIP template - the parameters are defined in notation table. Middle:
Raibert’s hopper template. Right:SLIP template illustration on a humer runner. This
figure is taken from [10].

SLIP is a hybrid systems such that its continuous dynamics changes depending

on the ground contact. Based on ground contact, two main phases are defined to

analyze slip motion; stance and flight phases. Moreover, each of these two phases are

also divided into the two subphases based on sign of rate of change of leg length for

stance phase and sign of vertical velocity for flight phase. Also, the transition between

these subphases have special properties and importance to determine the locomotion

characteristics. Figure 2 shows a single stride started from an apex position and labels

show the phases, subphases and transition events. Now, let us give their definitions

and general properties.

Flight Phase : A period in which SLIP doesn’t touch ground and it performs ballis-
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Figure 2: SLIP Model. Locomotion phases, subphases and transition events. This
figure is taken from [3].

tic flow which has a well known dynamics. Depending on the vertical velocity,

this phase is divided into two subphases; ascent and descent.

Ascent Phase : A subperiod of flight phase such that the vertical velocity is

positive (upward) and decreasing in magnitude. In this phase, potential

energy due to gravity increases.

Descent Phase : A subperiod of flight phase such that the vertical velocity is

negative (downward) and increases in magnitude. In this phase, potential

energy due to gravity decreases.

Stance Phase : A period in which the model touches ground. Due to gravitational

force, stance phase dynamics consists of non-integrable terms. Also,depending

on the rate of change of leg length, this phase is divided into two subphases;

compression ans decompression.

Compression Phase : A subperiod of stance phase such that the rate of

change of leg length is negative. In this phase the stored energy on com-

pliant leg increases.

Decompression Phase : A subperiod of stance phase such that the rate of
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change of leg length is positive. In this phase the stored energy on compli-

ant leg decreases.

Transition Events : Since our model is a hybrid system, it includes continuous

and discrete dynamics. These transition events are boundaries between the

phases. To perform a simulation study, the transitions events should be checked.

Moreover, these transition events have special meanings; for example, maximum

height or minimum leg length are reached during these events. Now, lets give

the general properties of these events.

Apex : This event occurs during flight phase between ascent and descent sub-

phases. Also at the instance of this event ,SLIP reaches the maximum

height (or maximum gravitational potential energy). To check this event,

vertical velocity can be used such that it will be zero.

“Apex occurs if bẏ = 0 and SLIP is in flight phase.”

Touchdown : Flight phase to stance phase transition event. It occurs when

the leg length is equal to touchdown leg length and SLIP descents. To

check this event,

“Touchdown occurs if qr = qrtd and bẏ < 0 ”

Bottom : This event occurs during stance phase between compression and de-

compression subphases. Also at the instance of this event, spring potential

energy reaches maximum (or minimum leg length is reached). To check

this event, rate of change of leg length can be used such that it will be

zero.

“Bottom occurs if qṙ = 0 and SLIP is in stance phase.”

Liftoff : Stance phase to flight phase transition event. It occurs when the leg

length is equal to liftoff length and SLIP ascents. To check this event,

“Liftoff occurs if qr = qrlo and bẏ > 0 ”

10



Notation used throught the report is listed on Table 1. The result of the previous

studies are derived with different notation, to see the original studies look at [3] and

[10].

2.2 SLIP Dynamics

As previously stated, SLIP is a hybrid systems, therefore the stance and flight phase

dynamics must be separately considered. In this part a general dynamics relations

will be provided in cartesian and polar coordinates for simulation studies. The SLIP

dynamics for referred previous studies is mentioned in the next section. We will begin

with the stance map for general purpose studies.

2.2.1 Stance Dynamics

One of the assumption for the SLIP model is that there is no slippage during the

stance phase and so polar coordinate is one of the suitable coordinate system to

model the stance dynamics. Therefore, our state vector is

q =


qθ

qθ̇
qr

qṙ


and the stance dynamics is

q̇ =


q̇θ

q̇θ̇
q̇r

q̇ṙ

 =


qθ̇

−gs sin(qθ)
qr

− 2qṙqθ̇
qr

qṙ
Fs(qr,qṙ)

m
+ qrq

2
θ̇
− gs cos(qθ)


where Fs(qr) is the spring force function defined according to rest leg length, current

leg length and the phase of the locomotion as (also see (2) and (3) for stance dynamics

derivation)

Fs(qr, qṙ) =

 kc(l0 − qr) , if qṙ ≤ 0;

kd(l0 − qr) , if qṙ > 0.
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Leg & Body Coordinates
qr Leg Length
qθ Leg angle from Vertical (counterclockwise convention)
qṙ Leg Compression rate
qθ̇ Leg Swing rate
pr Radial Momentum
pθ Angular Momentum
bx Horizontal Position of Body
by Vertical Position of Body
bẋ Horizontal Velocity of Body
bẏ Vertical Velocity of Body
px Horizontal Momentum
py Vertical Momentum
btx Horizontal Position of Toe

SLIP Parameters
m Body Mass
l0 Rest Length of Springy Leg
k Spring Constant used for general formulization
kc Compression Phase Spring Constant
kd Decompression Phase Spring Constant
gs Gravitational Acceleration during stance phase(positive)
gf Gravitational Acceleration during flight phase(positive)

Fg(x) Ground function. For a given position x, it returns
the ground height.

Fs(r, ṙ) Spring force function. For a given leg length it returns
spring force based on the stance phase of SLIP.

Us(r, ṙ) Spring potential energy function. For a given leg length
it returns stored energy on compliant leg based on the
stance phase of SLIP.

E Total Mechanical Energy
Touchdown Parameters

qθtd Leg Angle at Touchdown
qrtd Leg Length at Touchdown

Liftoff Parameters
qθlo Leg Angle at Liftoff
qrlo Leg Length at Liftoff

Apex Parameters
bẋa Apex Velocity
bya Apex Height

Table 1: Notation for SLIP Template
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Similarly, the state vector, b, can be defined in cartesian coordinates as

b =



bx

bẋ

by

bẏ

btx
1


and stance dynamics in cartesian coordinates is

ḃ =



ḃx

ḃẋ

ḃy

ḃẏ

ḃtx


=



bẋ
−Fs(qr,qṙ) sin(qθ)

m

bẏ
Fs(qr,qṙ) cos(qθ)

m
− gs

0



=



bẋ
−Fs(
√

(bx−btx)2+(by−Fg(btx))2,
(bx−btx)bẋ+(by−Fg(btx))bẏ√

(bx−btx)2+(by−Fg(btx))2
) sin(arctan(

by−Fg(btx)

bx−btx
))

m

bẏ
Fs(
√

(bx−btx)2+(by−Fg(btx))2,
(bx−btx)bẋ+(by−Fg(btx))bẏ√

(bx−btx)2+(by−Fg(btx))2
) cos(arctan(

by−Fg(btx)

bx−btx
))

m
− gs

0


For simplicity, if we assume flat ground with zero height (i.e. Fg(x) = 0 ∀x ) and

the toe of the leg is located at zero (btx = 0), then the stance dynamic in cartesian

coordinates becomes

ḃ =



bẋ
−Fs(
√
bx

2+by
2,
bxbẋ+bybẏ√
bx2+by2

) sin(arctan(
by
bx

))

m

bẏ
Fs(
√
bx

2+by
2,
bxbẋ+bybẏ√
bx2+by2

) cos(arctan(
by
bx

))

m
− gs

0
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where Fs(qr, qṙ) is the same as previously defined.

Stance dynamics has several nonintegrable terms due to gravity [4], [12]. There-

fore, there is not an exact analytical solution for stance map. There exists several

studies on approximate solution of SLIP stance dynamics. In this report, only two

of them are considered ([10] and [3]) and a new improvement tool with gravity effect

correction is introduced to improve the mapping performance.

2.2.2 Flight Dynamics

As previously stated, flight dynamics of the SLIP is ballistic flow which has a well

known analytically solved dynamics. For simplicity, the most suitable coordinate

system is cartesian coordinates to analyze the flight dynamics. The state vector, b

can be defined in cartesian coordinates as

b =



bx

bẋ

by

bẏ

btx


and the flight dynamics is

ḃ =



ḃx

ḃẋ

ḃy

ḃẏ

ḃtx


=



bẋ

0

bẏ

−gf
bẋ


Coordinate transfer maps can be written to transfer cartesian state vectors to polar

state vectors to use both dynamics relations.

The fifth state variable, btx is only defined for multi-stride locomotion. For single

stride locomotion it is not necessary and can be assumed zero. As a side note, it

is constant during the stance phase and has the same dynamic equation with body

position state, bx. It is only updated independently from its dynamics when apex

event occurs and it is updated with the new touchdown angle.
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3 Previous Studies on Approximate Stance Map

Approximate stance map is required for stability analysis of locomotion, control al-

gorithm design and motion planning of the SLIP and SLIP like platforms. Before

usage of approximate map for stance phase, several controllers are designed based

on the captured data from running video of a designed legged runner or animal, or

numerically solved discrete locomotion configurations. For example, in [2], real time

deadbeat controller was designed by interpolating the previously solved locomotions,

it was an expensive way of designing control law for monoped runner. After stance

map approximation studies, several controllers, especially deadbeat controllers, are

designed based on the approximate stance maps as in [6], [8] and [11] which are

applicable for real time locomotion control and inexpensive compared to [2].

The general idea behind the approximate stance map is the estimating the next

apex state from the current apex state with a chosen control set (touchdown angle

and leg compliance control).Also, bottom to apex or apex to bottom maps can be

necessary for other purpose, e.g. stance map for variable stiffness. Figure 3 represents

these maps for a symmetric gait.

Figure 3: Left: Bottom to Apex Map. Middle: Apex Return Map. Right: Apex to
Bottom Map. This figure is taken from [11].

In this section, two previous studies on approximate stance map ( [3] and [10]) are

examined and their solution approaches are summarized with the notation used in

this report. At the end of this section, the proposed gravity effect correction methods

are introduced and the necessity of the proposed method is given. Let us begin with

the approximate stance map solution proposed by Geyer et al.
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3.1 Simple Approximate Stance Map by Geyer et al.

The stance phase dynamics has nonintegrable terms, and to find an analytical solu-

tion for stance equations Geyer et al. have used several approximations to have an

integrable approximate dynamics for stance phase. The Lagrangian equation during

ground contact in polar coordinates (qr, qθ) is given by (see Figure 1 and Table 1 for

notation)

L =
m

2
(q̇r

2 + qr
2q̇θ

2)− k

2
(l0 − qr)2 −mgsqr cos(qθ) (1)

the equation of motion for the center of mass can be derived from Lagrange function

(1) as

0 =
d

dt
(
dL

dq̇j
)− dL

dqj

0 =
d

dt
(
dL

dq̇r
)− dL

dqr

0 =
d

dt
(
dL

dq̇θ
)− dL

dqθ
mq̈r = mqrq̇θ

2 + k(l0 − qr)−mgs cos(qθ) (2)

0 =
d

dt
(mqr

2q̇θ) +mgsqr sin qθ (3)

Since (2) and (3) are coupled nonlinear differential equation and a closed form

solution with known basic functions may not be found easily, several

approximations are necessary to find an approximate solution.

Assumption 1 To get rid of some of nonlinear terms, sufficiently small sweep

angle, ∆qθ, around zero radian is assumed, in other wolds cos(qθ) ≈ 1 and

sin(qθ) ≈ 0.

So (2) and (3) become

mq̈r = mqrq̇θ
2 + k(l0 − qr)−mgs (4)

d

dt
(mqr

2q̇θ) = 0 (5)

By this assumption, the motion equation is transformed into integrable dynamics

while the total energy, E, and angular momentum, pθ = mqr
2q̇θ, is conserved.
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Remark 1 As a result of assumption 1, it seems that angular momentum is also

conserved during stance phase. However, angular momentum is not really conserved

due to gravity when there is a ground contact. Therefore, conservation of angular

momentum is a result of first assumption.

From (5) the leg angle, qθ(t), can be solved by using the solution of leg length,

qr(t), since q̇θ = pθ
mqr2

. Thus,to find approximate apex return map solution of leg

length , qr(t), is the first crucial requirement.

Since angular momentum, pθ, and total mechanical energy, E, is conserved, the

energy relation can be written as (note that cos(qθ) ≈ 1 by Assumption 1)

E =
m

2
q̇r

2 +
pθ

2

2mqr2
+
k

2
(l0 − qr)2 +mgsqr. (6)

Let us define new parameters

ρ =
qr − l0
l0

≤ 0, ε =
2E

ml0
2 , ω =

pθ

ml0
2 and ω0 =

√
k

m
(7)

and substitute them into (6)

ε = ρ̇2 +
ω2

(1 + ρ)2
+ ω0

2ρ2 +
2gs
l0

(1 + ρ) (8)

Assumption 2 ρ represents the relative spring amplitude which gives information

about the percentage compression of the spring. To find an analytical solution, it is

assumed that spring is allowed to perform small compressions. Therefore, |ρ| << 1

and 1
(1+ρ)2

can be approximated by Taylor series expansion around zero as given below.

1

(1 + ρ)2

∣∣∣∣∣
ρ=0

= 1− 2ρ+ 3ρ2 −O(ρ3)

Using the result of assumption 2 and Eq.(8), an integrable equation can be written

as

t =
∫ dρ√

λρ2 + µρ+ ν
(9)

where
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λ = −(3ω2 + ω0
2), µ = 2(ω2 − gs/l0) and ν = (ε− ω2 − 2gs/l0)

The solution of the integral in (9) is as below if λ is negative and discriminant of

the polynomial λρ2 + µρ + ν (i.e. µ2 − 4λν) is positive. From the definition of λ, it

is obvious that it is negative. The second condition is satisfied if ν is positive and it

can be checked at the instance of touchdown.

∫ dρ√
λρ2 + µρ+ ν

= − 1√
−λ

arcsin(
2λρ+ µ√
µ2 − 4λν

) (10)

The general radial motion, qr(t), can be solved as

qr(t) = l0(1 + a+ b sin(ω̂0t)) (11)

where

ω̂0 =
√
ω0

2 + 3ω2,

a =
ω2 − gs/l0
ω0

2 + 3ω2
=
ω2 − gs/l0

ω̂2
0

,

b =

√
(ω2 − gs/l0)2 + (ω0

2 + 3ω2)(ε− ω2 − 2gs/l0)

ω0
2 + 3ω2

=

√√√√a2 +
ε− ω2 − 2gs/l0

ω̂2
0

.

Figure 4 shows one period of the general solution of the leg length during contact

phase. As seen from the figure, it is a sinusoidal motion with amplitude l0b, frequency

ω̂0 and offset l0(1 + a). Since it is a solution for stance phase, the part of solution

where qr(t) ≤ l0 is fulfilled is only valuable. Also, ∆lmax represents the maximum

spring compression and it is the difference between l0b and l0a (∆lmax = l0b − l0a).

From assumption 3 |ρ| � 1 and |ρ| = ∆lmax
l0

= b− a ⇒ b− a� 1.

(11) can be used to determine the critical times such as touchdown, bottom and

liftoff times. The general formulation of these instances can be done as
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Figure 4: General solution for the leg length, qr(t) for stance phase. The sinusoidal
solution has amplitude l0b and frequency ω̂0 with offset l0(1 + a). Since the solution
is only suitable for stance phase, the portion where qr ≤ l0 is significant. a can also
be negative in which case l0 will be above l0(1 + a). ∆lmax represents the maximum
leg compression. This figure is taken from [3].
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ttd =
1

ω̂0

{
(2n+

3

2
)π −

[
π

2
+ arcsin(

qrtd/l0 − 1− a
b

)

]}
(12)

tb =
1

ω̂0

{(
2n+

3

2

)
π
}

(13)

tlo =
1

ω̂0

{
(2n+

3

2
)π +

[
π

2
+ arcsin(

qrlo/l0 − 1− a
b

)

]}
(14)

where n ∈ N

(12) and (14) can be simplified for a special case when the liftoff , qrlo, and

touchdown, qrtd, leg lengths are equal to rest leg length,l0

ttd =
1

ω̂0

{
(2n+

3

2
)π −

[
π

2
+ arcsin(−a

b
)
]}

(15)

tlo =
1

ω̂0

{
(2n+

3

2
)π +

[
π

2
+ arcsin(−a

b
)
]}

(16)

As previously stated, the angular motion of the SLIP can be found from radial mo-

tion since the angular momentum is conserved during stance phase (Remark 1). The

relation between angular and radial motion is q̇θ = pθ
mqr2

and by using the previously

defined parameters ρ and ω , the angular velocity can be written as

q̇θ =
ω

(1 + ρ)2
(17)

The term 1
(1+ρ)2

can be linearly approximated by Taylor series expansion as

previously done. So, (17) becomes q̇θ = ω(1− 2ρ). If we use the definition of ρ,

angular motion equation is found as (ρ = qr−l0
l0

= a+ b sin(ω̂0t))

qθ(t) = qθtd +
∫ t

ttd

ω[(1− 2a)− 2b sin(ω̂0t)]dt, (18)

qθ(t) = qθtd + ω(1− 2a)(t− ttd) +
2bω

ω̂0

[cos(ω̂0t)− cos(ω̂0ttd)] (19)

where ttd ≤ t ≤ tlo (note that ttd and tlo are calculated as in (12)) and (14).

Moreover, the stance time, ts, can be calculated easily as
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ts = tlo − ttd = [π + 2 arcsin(−a/b)]/ω̂0 (20)

Also if the touchdown instance is scaled to t=0, the leg length and leg angle

equations take the form as below while the stance time remains the same as in (20)

qr(t) = l0 + l0[a(1− cos(ω̂0t))−
√
b2 − a2 sin(ω̂0t)] (21)

qθ(t) = qθtd + (1− 2a)ωt+
2ω

ω̂0

[a sin(ω̂0t) +
√
b2 − a2(1− cos(ω̂0t))] (22)

If the predefined parameters a, b, ε, ω and ω0 are replaced by the touchdown

states and system parameters and touchdown time instance is selected as zero, the

radial and angular motion equation is given by

qr(t) = l0 −
|qṙtd|
ω̂0

sin(ω̂0t) +
qθ̇td

2l0 − gs
ω̂2

0

(1− cos(ω̂0t)), (23)

qθ(t) = qθtd + (1− 2
qθ̇td

2 − gs/l0
ω̂2

0

)qθ̇tdt

+
2qθ̇td
ω̂0

[
qθ̇td

2 − gs/l0
ω̂2

0

sin(ω̂0t) +
|qṙtd |
ω̂0l0

(1− cos(ω̂0t))] (24)

where the oscillation frequency is calculated by ω̂0 =
√
k/m+ 3qθ̇td

2 and the stance

time , ts and bottom time, tb, is given by

ts =
1

ω̂0

[
π + 2 arctan(

gs − l0qθ̇td
2

|qṙtd|ω̂0

)

]
(25)

tb =
1

ω̂0

arctan

 |qṙtd|ω̂0

q2
θ̇td
l0 − gs

 (26)

3.2 Approximate Iterative Stance Map by Schwind and

Koditschek

The SLIP template has nonintegrable stance dynamics and finding an approximate

analytical solution requires several assumptions. In [3], there are some assumptions

that limit motion of SLIP with small swept angle and spring compression, and by

this limitations and appropriate assumptions the stance dynamics takes an integrable
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form. Since there are limitations on locomotion, the performance of the approxima-

tion worsen outside the limited motions. Schwind and Koditscheck have proposed

another approximation for stance map such that the nonintegrable dynamics can be

solved by iterative application of mean value theorem for integral operator. Also, they

have showed that this iteration method converges to the exact solution if the method

is applied sufficiently many times. Note that their approximation is not whole apex

return map, only bottom to apex map is given (see Figure 3).

The stance dynamics for the decompression phase can be written by Hamiltonian

mechanics as

H =
1

2m

(
p2
r +

p2
θ

q2
r

)
+

1

2
kd(l0 − qr)2 +mgsqr cos(qθ) (27)

and

ṗj = −dH
dqj

, q̇j =
dH

dp
(28)

so the Hamiltonian vector field is given by

XH =


q̇r

q̇θ

ṗr

ṗθ

 =



pr
m
pθ
mq2r

p2θ
mq3r

+ kd(l0 − qr)−mgs cos(qθ)

mgsqrsin(qθ)

 (29)

Using the Harmitonian vector and conservation of energy (the SLIP template does

not contain any lossy parameter), the relation between the states can be written as

dts
dqr

(qr, qθ, pθ) =
m

pr(qr, qθ, pθ)
, (30)

dqθ
dqr

(qr, qθ, pθ) =
pθ

q2
rpr(qr, qθ, pθ)

, (31)

dpθ
dqr

(qr, qθ, pθ) =
m2gsqrsin(qθ)

pr(qr, qθ, pθ)
, (32)

pr(qr, qθ, pθ, E) = H−1(qr, qθ, pθ, E)

=

√√√√2m
(
E − 1

2
kd(l0 − qr)2 −mgsqr cos(qθ)

)
− p2

θ

q2
r

(33)
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where E represents the total mechanical energy which is constant,

H(qr, qθ, pr, pθ) = E.

Since there is an implicit function for radial momentum, pr, if the other two state,

qθ and pθ, are solved then pr can be calculated by Eq.(33).

However, (30), (31) and (32) are nonlinear coupled differential equations.The ex-

act analytical solution is unknown but by mean value theorem an iterative solution

procedure can be driven. In fact, Schwind and Koditschek in [9] have shown the

following results:

Theorem 1 Suppose the function f is continuous on (a,b] and g is integrable on (a,b)

with g(t)≥ 0 ∀ t ∈ (a,b). Let x ∈ (a,b]. If both

lim
t→a

f(t)−K
(t− a)r

lim
t→a

g(t)

(t− a)s

exist and are nonzero for some constant K, some nonzero r, and some s > -1 with

r+s > -1, then

1. there exists a ξx ∈ (a, x] such that

∫ x

a
f(t)g(t)dt = f(ξx)

∫ x

a
g(t)dt (34)

2. for any such choice of ξx

lim
x→a

ξx − a
x− a

=
(

s+ 1

r + s+ 1

) 1
r

(35)

For the calculation of ξx a practical observation is presented in [9].

Observation 1 If, motivated by (35), ξx is approximated by

ξ̂x = a+
(

s+ 1

r + s+ 1

) 1
r

(x− a) for x nera a, (36)

and replace ξx by ξ̂x in Eq.(34), an approximation is obtained for the integral as

∫ x

a
f(t)g(t)dt ≈ f(ξ̂x)

∫ x

a
g(t)dt for x near a. (37)
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Using Theorem 1 and Observation 1 and under reasonable assumptions ξx is found

as in [10, Appendix A] for the following integrals.

∫ qr

qrb

1

H−1(σ, qθ, pθ, E)
dσ ≈ 1

H−1(ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), E)
(qr − qrb) (38)∫ qr

qrb

1

σ2H−1(σ, qθ, pθ, E)
dσ ≈ 1

ξ̂2
xH
−1(ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), E)

(qr − qrb) (39)

∫ qr

qrb

σ

H−1(σ, qθ, pθ, E)
dσ ≈ ξ̂x

H−1(ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), E)
(qr − qrb) (40)

where ξ̂r is found for all of the integrals the same as

ξ̂x =
3

4
qrb +

1

4
qr (41)

Thus, nonlinear coupled differential equations (30),(31) and (32) can be solved

iteratively as

t̂s(n+1)
(qr) = tb +

m

H−1(ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), E)
(qr − qrb) (42)

q̂θ(n+1)
(qr) = qθb +

p̂θn(ξ̂r)

ξ̂2
rH
−1(ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), E)

(qr − qrb) (43)

p̂θ(n+1)
(qr) = pθb +

m2gsξ̂r sin(q̂θn(ξ̂r))

H−1(ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), E)
(qr − qrb) (44)

p̂r(n+1)
(qr) =

√√√√√2m
(
E − 1

2
kd(l0 − ξ̂r)2 −mgsξ̂r cos(q̂θ(n+1)

(ξ̂r))
)
−
p̂2
θ(n+1)

(ξ̂r)

ξ̂2
r

(45)

where n is the iteration number.

The zeroth iteration can be any approximate analytical solution for contact phase.

In [10] three different initial approximate solutions are used and [3] may be a good

initial iteration for this iterative approximation.
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4 Stance Map with Gravity Correction

In section 3, the previous studies [3] and [10] on approximate stance map are given and

both of the studies are considered to symmetric strides.In [3], Assumption 1 (small

sweep angle around zero) shows that symmetric gaits are considered during deriva-

tions since symmetric locomotions always have sweep angles around zero.Similarly,

in [10] the initial configuration of the locomotion is started from bottom state with

verticular leg alignment and vertical leg alignment at bottom state is only realized

during symmetric gaits.

However, humans, animals and legged robots sometimes need to use nonsymmet-

ric gaits to slow down, speed up, stop or change direction of motion in sagittal plane.

Especially, if one performs a motion planning algorithm for SLIP like systems, well

performing controllers for nonsymmetric gaits are needed. One of the way of design-

ing high performance controllers is usage of reliable stance maps for nonsymmetric

locomotions.

In this section, we propose several methods to have more reliable apex return

map for nonsymmetric gaits, our methods are built on the results on [3]. During

stance map derivation in [3], conservation of angular momentum is a consequence of

Assumption 1. In fact, angular momentum is not conserved due to gravity for both

symmetric and nonsymmetric gaits when there is a ground contact.There is a special

case for symmetric gait states as

qrlo = qrtd

qṙlo = −qṙtd
qθlo = qθtd −∆qθ

qθ̇lo = qθ̇td

and the angular momentum at liftoff is the same as the angular momentum at touch-

down, so angular momentum is “conserved” for mapping from touchdown state to

liftoff state which means total effect of gravity on angular momentum from touchdown

to liftoff is zero for symmetric strides. Thus, conservation of angular momentum can

be a reasonable assumption for symmetric gaits. On the other side, there is a to-

tal nonzero effect of gravity on angular momentum for nonsymmetric locomotion for

mapping from touchdown to takeoff. In the following subsections, we propose several
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methods to take into account this gravity effect with virtual gravity effect on angular

momentum. When we only consider the stance phase (see Figure 5), the general effect

of the gravity on angular moment can be modeled as

τ(t) =
dP (t)

dt
⇔ P (t) = Pt0 +

∫ t

t0
τ(ζ)dζ (46)

τ(t) = mgsqr(t) sin(qθ(t)) (47)

P (t) = Pt0 +
∫ t

t0
τ(ζ)dζ ≈ Pt0 + (t− t0)

(
1

n

n∑
k=1

mgqr(n) sin(qθ(n))

)
(48)

where n is number of samples during stance locomotion.

Figure 5: SLIP Stance Phase. This figure is taken from [11].

4.1 Gravity Correction Type 0

Gravity Correction Type 0 is a method such that the total gravity effect on angular

momentum from touchdown to liftoff is modeled with a constant virtual effect. The

virtual effect is calculated by assuming that leg length is constant and equal to rest leg

length during stance phase, qr(t) ≈ l0. Also, the samples of the motion are assumed

to be taken at touchdown and liftoff instances. Using (48), the virtual gravity effect

resolves to

Pc(t) =
tsmgsl0

2
(sin(qθtd) + sin(qθlo)) (49)

parameters ttd, tlo, ts = tlo − ttd, qθtd and qθtd can be calculated by using any related

formula in section 3.1.

We propose to use the virtual effect, Pc(t) given as in (49), as a correction term

added to original angular momentum which is assumed to be conserved during for-
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mulation in [3]. Therefore, we have only modified the parameter pθ and rest of the

formulation stays the same.

p̂θ(t) = pθ + Pc(t) (50)

Moreover, bottom instance can be taken into account as a sampling time since it

is also a critical instance of locomotion. Thus the formula for virtual gravity effect

changes slightly and usage of the correction term is the same as above.

Pc(t) =
tsmgsl0

3
(sin(qθtd) + sin(qθb) + sin(qθlo)) (51)

similarly, parameters ttd, tlo, tb, ts = tlo − ttd, qθtd , qθb and qθtd can be calculated by

using any related formula in section 3.1.

4.2 Gravity Correction Type 1

Gravity Correction Type 1 is another method such that the total gravity effect on

angular momentum from touchdown to liftoff is modeled with a constant virtual effect.

The virtual effect is calculated by assuming that leg length is constant and equal to

average of rest leg length and bottom leg length during stance phase, qr(t) ≈
l0+qrb

2
.

Also, the samples of the motion are assumed to be taken at touchdown and liftoff

instances. Using (48), the virtual gravity effect resolves to

Pc(t) = tsmgs
l0 + qrb

4
(sin(qθtd) + sin(qθlo)) (52)

parameters ttd, tlo, tb, ts = tlo − ttd, qrb , qθtd and qθtd can be calculated by using any

related formula in section 3.1.

We propose to use the virtual effect, Pc(t) given as in (52), as a correction term

added to original angular momentum which is assumed to be conserved during for-

mulation in [3]. Therefore, we have only modified the parameter pθ and rest of the

formulation stays the same.

p̂θ(t) = pθ + Pc(t) (53)

Moreover, bottom instance can be taken into account as a sampling time since it

is also a critical instance of locomotion. Thus the formula for virtual gravity effect
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changes slightly and usage of the correction term is the same as above.

Pc(t) = tsmgs
l0 + qrb

6
(sin(qθtd) + sin(qθb) + sin(qθlo)) (54)

similarly, parameters ttd, tlo, tb, ts = tlo − ttd, qrb , qθtd , qθb and qθtd can be calculated by

using any related formula in section 3.1.

4.3 Gravity Correction Type 2

Gravity Correction Type 2 is third method such that the total gravity effect on angular

momentum from touchdown to liftoff is modeled with a constant virtual effect. The

virtual effect is calculated by assuming that leg length is constant and equal to average

leg length during stance phase, qr(t) ≈ qrav .

Using (11) average leg length is derived as

qrav =
1

tlo − ttd

∫ tlo

ttd

l0(1 + a+ b sin(ω̂0t))dt (55)

= l0(1 + a)− b

ω̂0(tlo − ttd)
(cos(ω̂0tlo)− cos(ω̂0ttd)) (56)

= l0(1 + a)− b

ω̂0ts
(cos(ω̂0tlo)− cos(ω̂0ttd)) (57)

parameters a, b, ω̂0, ttd, tlo and ts = tlo − ttd can be calculated any related formula in

section 3.1.

Using (21) average leg length is given by

qrav =
1

ts

∫ ts

0

(
l0 + l0[a(1− cos(ω̂0t))−

√
b2 − a2 sin(ω̂0t)]

)
dt (58)

= l0(1 + a)− l0
tsω̂0

[
a sin(ω̂0ts) +

√
b2 − a2(1− cos(ω̂0ts))

]
(59)

parameters a, b, ω̂0 and ts = tlo − ttd can be calculated any related formula in section

3.1.

Using (23) average leg length is resolved to

qrav =
1

ts

∫ ts

0

(
l0 −

|qṙtd|
ω̂0

sin(ω̂0t) +
qθ̇td

2l0 − gs
ω̂2

0

(1− cos(ω̂0t))

)
dt (60)

= l0 +
qθ̇td

2l0 − gs
ω̂2

0

− |qṙtd|
ω̂2

0ts
(1− cos(ω̂0ts))−

qθ̇td
2l0 − gs
ω̂3

0ts
sin(ω̂0ts) (61)
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where the oscillation frequency is calculated by ω̂0 =
√
k/m+ 3qθ̇td

2 and the stance

time , ts is given by (25).

Also, the samples of the motion are assumed to be taken at touchdown and liftoff

instances. Using (48), the virtual gravity effect resolves to

Pc(t) =
tsmgsqrav

2
(sin(qθtd) + sin(qθlo)) (62)

parameters ttd, tlo, ts = tlo − ttd, qθtd and qθtd can be calculated by using any related

formula in section 3.1.

We propose to use the virtual effect, Pc(t) given as in (62), as a correction term

added to original angular momentum which is assumed to be conserved during for-

mulation in [3]. Therefore, we have only modified the parameter pθ and rest of the

formulation stays the same.

p̂θ(t) = pθ + Pc(t) (63)

Moreover, bottom instance can be taken into account as a sampling time since it

is also a critical instance of locomotion. Thus the formula for virtual gravity effect

changes slightly and usage of the correction term is the same as above.

Pc(t) =
tsmgsqrav

3
(sin(qθtd) + sin(qθb) + sin(qθlo)) (64)

similarly, parameters ttd, tlo, ts = tlo − ttd, qθtd , qθb and qθtd can be calculated by using

any related formula in section 3.1.

4.4 Gravity Correction Type 3

Gravity correction type 3 is another method such that total gravity effect on angular

momentum from any initial stance state to any final stance state is modeled with a

constant virtual effect. Gravity correction types 0-2 are proposed especially for apex

return map and gravity correction type 0 is a special case of type 3 such that the

initial stance state is touchdown state and the final stance state is liftoff state.

Let ti and tf be initial and final state times such that ttd ≤ ti < tf ≤ tlo. Using

Eq.(48), the virtual gravity effect resolves to

Pc(t) =
(tf − ti)mgs

2
[qr(ti) sin(qθ(ti)) + qr(tf ) sin(qθ(tf ))] (65)
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where ttd, tlo, qr(t) and qθ(t) are defined as in section 3.1.

We propose to use the virtual effect, Pc(t) given as (65) , as a correction term added

to original angular momentum which is assumed to be conserved during formulation

in [3]. Therefore, we have only modified the parameter pθ and rest of the formulation

stays the same.

p̂θ(t) = pθ + Pc(t) (66)

A special case of initial and final state times are touchdown and liftoff times, and

also if touchdown and liftoff leg lengths are set to be rest leg length, then correction

type 3 is the same as correction type 0.

Moreover, this correction type is valuable for variable stiffness case since the apex

return map is derived by dividing the return map into two as apex to bottom and

bottom to apex maps. And in this parts of the maps the virtual gravity effect on

angular momentum is calculated by touchdown, bottom and liftoff states separately

for each parts of the apex return map.

4.5 Gravity Correction Type 4

Gravity correction type 4 is fifth method such that total gravity effect on angular

momentum from any initial stance state to any final stance state is modeled with a

constant virtual effect by using the average leg length during this period. The virtual

effect is calculated by assuming that leg is constant and equal to average leg length,

qav(ti, tf ) during period of motion from initial state to final state. Gravity correction

types 0-2 are proposed especially for apex return map and gravity correction type 2

is a special case of type 4 such that the initial stance state is touchdown state and

the final stance state is liftoff state.

Let ti and tf are initial and final state times such that ttd ≤ ti < tf ≤ tlo. Using

(11) average leg length is derived as

qrav(ti, tf ) =
1

tf − ti

∫ tf

ti
l0(1 + a+ b sin(ω̂0t))dt (67)

= l0(1 + a)− b

ω̂0(tf − ti)
(cos(ω̂0tf )− cos(ω̂0ti)) (68)

(69)
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where a, b and ω̂0 can be calculated by using any related formula in section 3.1.

Using (21) average leg length is given by (note that ttd = 0)

qrav(ti, tf ) =
1

tf − ti

∫ tf

ti

(
l0 + l0[a(1− cos(ω̂0t))−

√
b2 − a2 sin(ω̂0t)]

)
dt (70)

= l0(1 + a)− l0
(tf − ti)ω̂0

[a(sin(ω̂0tf )− sin(ω̂0ti)) (71)

−
√
b2 − a2(cos(ω̂0tf )− cos(ω̂0ti))

]
(72)

parameters a, b and ω̂0 can be calculated by using any related formula in section 3.1.

Using (23) average leg length is resolved to (note that ttd = 0)

qrav(ti, tf ) =
1

tf − ti

∫ tf

ti

(
l0 −

|qṙtd|
ω̂0

sin(ω̂0t) +
qθ̇td

2l0 − gs
ω̂2

0

(1− cos(ω̂0t))

)
dt(73)

= l0 +
qθ̇td

2l0 − gs
ω̂2

0

+
|qṙtd|

ω̂2
0(tf − ti)

[cos(ω̂0tf )− cos(ω̂0ti)] (74)

−
qθ̇td

2l0 − gs
ω̂3

0(tf − ti)
[sin(ω̂0tf )− sin(ω̂0ti)] (75)

where the oscillation frequency is calculated by ω̂0 =
√
k/m+ 3qθ̇td

2.

Using Eq.(48), the virtual gravity effect resolves to

Pc(t) =
(tf − ti)mgsqrav(ti, tf )

2
(sin(qθ(ti)) + sin(qθ(tf ))) (76)

where qθ(t) is given in section 3.1 for different qrav(ti, tf ) formulations.

We propose to use the virtual effect, Pc(t) given as in (76), as a correction term

added to original angular momentum which is assumed to be conserved during for-

mulation in [3]. Therefore, we have only modified the parameter pθ and rest of the

formulation stays the same.

p̂θ(t) = pθ + Pc(t) (77)

A special case of initial and final state times are touchdown and liftoff times,for

this special case correction type 4 is the same as correction type 2.
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Moreover, this correction type is valuable for variable stiffness case since the apex

return map is derived by dividing the return map into two as apex to bottom and

bottom to apex maps. And in this parts of the maps the virtual gravity effect on

angular momentum is calculated by touchdown, bottom and liftoff states separately

for each parts of the apex return map.

4.6 Gravity Correction Type 5

Gravity Correction Type 5 is last method such that the total gravity effect on angular

momentum during stance phase is approximated with a time-variant virtual effect.To

calculate the virtual gravity effect, leg length and leg angle during stance is approx-

imated by 5 degree polynomial, qr(t) ≈ qrav . Using (11) average leg length derived

as
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5 Approximate Stance Map for Variable Stiffness

There are not too much control parameters for SLIP template since it is the simplest

model for legged systems, animals and human. Touchdown leg angle is an indispens-

able control parameter for stable locomotion. Other control feature is compliance

leg parameters to adjust total energy of the model such that characteristic proper-

ties of locomotion, apex velocity and height, can be brought to desired levels. In

general there are two different approaches to use stiffness property of leg for control

of locomotion. First one is that the spring constant is assumed to be constant dur-

ing stance phase and touchdown and liftoff leg lengths can be controlled to store or

release energy from the system.In [1] and [13] similar approach is used on an exper-

imental robotic platform , bow legged hopping robot, and total energy of the robot

is controller by compressing stiff leg during flight phase to store energy.Also, in [6] a

deadbeat gait controller for a bipedal is designed by adjusting touchdown and liftoff

leg lengths. Second approach is controlling spring constants during compression and

decompression phases to modify the total system energy. The simulation and exper-

imental studies on this approach have been done by Raibert in [5] and the control

of leg spring constant is done by adjusting air pressure in leg piston by a pneumatic

actuator during flight phase for compression phase spring constant and at the bottom

instance for decompression phase spring constant.

In our studies, we are planning to use variable spring control approach as one of

the control strategy with touchdown angle control for motion planning of SLIP in

2D. Therefore, we need approximate stance map for variable stiffness case. In this

section, two different approximate stance maps built on [3] and [10] are introduced.

The main difference of variable stiffness stance map from the constant stiffness one is

two different spring constant can be used for compression and decompression phase.

Therefore, apex return map should be divided into two parts, apex to bottom map

and bottom to apex map, where different spring constants are employed. The general

idea for variable stiffness stance map is represented in Figure 6.

5.1 Simple Approximate Stance Map For Variable Stiffness

In [3] approximate apex return map has been found as a formula of model parame-

ters,touchdown states, total energy and angular momentum while spring constant is

not variable during stance phase.Also since SLIP template has not lossy components,
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Figure 6: SLIP apex return map for variable stiffness case . Variable stiffness Apex
Return Map = Apex to Bottom Map with kc + Bottom to Apex Map with kd.

total energy of the system is conserved. However, for variable compliance case, total

energy of the model can be modified by controlling the spring constant at bottom

instance, so total energy is not constant during stance map and there is a discrete

change on total energy at bottom instance. Therefore, apex return map can be ob-

tained by considering apex to bottom map and bottom to apex map separately as in

Figure 6.

5.1.1 Apex to Bottom Map

Apex to bottom map can be easily written from results of [3]

qr(t) = l0(1 + aab + bab sin(ω̂0abt)) (78)

qθ(t) = qθtd + ω(1− 2aab)(t− ttd) +
2babωab
ω̂0ab

[cos(ω̂0abt)− cos(ω̂0abttd)] (79)

where ttd ≤ t ≤ tbab . ttd and tbab are given by

ttd =
1

ω̂0ab

{
(2n+

3

2
)π −

[
π

2
+ arcsin(

qrtd/l0 − 1− aab
bab

)

]}
(80)

tbab =
1

ω̂0ab

{
(2n+

3

2
)π
}

(81)

where n ∈ N and the parameters aab, bab, ωab and ω̂0ab are defined as

εab =
2Eab

ml0
2 (82)
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ωab =
pθ

ml0
2 (83)

ω0ab =

√
kc
m

(84)

ω̂0ab =
√
ω0ab

2 + 3ωab2, (85)

aab =
ωab

2 − gs/l0
ω0ab

2 + 3ωab2
=
ωab

2 − gs/l0
ω̂2

0ab

, (86)

bab =

√
(ωab2 − gs/l0)2 + (ω0ab

2 + 3ωab2)(εab − ωab2 − 2gs/l0)

ω0ab
2 + 3ωab2

(87)

=

√√√√a2
ab +

εab − ωab2 − 2gs/l0
ω̂2

0ab

. (88)

where Eab is touchdown total energy, which is conserved during compression phase,

and pθ is total angular momentum during stance phase and it is assumed to be

conserved during compression phase.

Also (80) can be simplified for a special case when touchdown leg length, qrtd , is

equal to rest leg length, l0,

ttd =
1

ω̂0ab

{
(2n+

3

2
)π −

[
π

2
+ arcsin(−aab

bab
)
]}

(89)

5.1.2 Bottom to Apex Map

Bottom to apex map has the same form of apex to bottom map solution

qr(t) = l0(1 + aba + bba sin(ω̂0ba(t+ tbba − tbab))) (90)

qθ(t) = qθb + ω(1− 2aba)(t− tbab) (91)

+
2bbaωba
ω̂0ba

[cos(ω̂0ba(t+ tbba − tbab))− cos(ω̂0batbba)] (92)

where tbab ≤ t ≤ tlo. tbab is calculated by Eq.(81) and tbba and tlo are given by (note

that the bottom times may be different due to formulization since spring constants

are not the same for compression and decompression phases, therefore there must be

time shift for derivations of bottom to apex map)
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tbba =
1

ω̂0ba

{
(2n+

3

2
)π
}

(93)

tlo =
1

ω̂0ba

{
(2n+

3

2
)π +

[
π

2
+ arcsin(

qrlo/l0 − 1− aba
bba

)

]}
+ tbab − tbba (94)

(95)

(94) can be simplified for a special case when liftoff leg length, qrlo , is equal to rest

leg length, l0,

tl0 =
1

ω̂0ba

{
(2n+

3

2
)π +

[
π

2
+ arcsin(−aba

bba
)
]}

+ tbab − tbba (96)

where n ∈ N.

Remark 2 pθ = mq2
rqθ̇ is conserved during compression and decompression phases

separately. To check if total angular momentum is conserved during all stance phase,

the states just before and after bottom instance must be controlled. During bottom

instance, we only change the spring constant, so there are discrete jumps on total

energy and spring force. Thus, acceleration states may have discrete jumps but veloc-

ity and position states are continuous after bottom event. Total angular momentum

depends on the position and velocity states, therefore it is continuous and constant

during stance phase.

Remark 3 At bottom instance, spring constant is changed based on a control al-

gorithm and some amount of energy is stored or released from springy leg. This

additional energy is given by

Eadditional =
1

2
(kd − kc)(l0 − qrb)2 (97)

where qrb and tb can be calculated by (78) and (81).Thus, total energy during

decompression phase, Eba, is given by

Eba = Eab + Eadditional = Eab +
1

2
(kd − kc)(l0 − qr(tb))2 (98)
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Parameters aba, bba, ωba and ω̂0ba are defined for (90)-(96) as

εba =
2Eba

ml0
2 (99)

ωba =
pθ

ml0
2 = ωab (100)

ω0ba =

√
kd
m

(101)

ω̂0ba =
√
ω0ba

2 + 3ωba2, (102)

aba =
ωba

2 − gs/l0
ω0ba

2 + 3ωba2
=
ωba

2 − gs/l0
ω̂2

0ba

, (103)

bba =

√
(ωba2 − gs/l0)2 + (ω0ba

2 + 3ωba2)(εba − ωba2 − 2gs/l0)

ω0ba
2 + 3ωba2

(104)

=

√√√√a2
ba +

εba − ωba2 − 2gs/l0
ω̂2

0ba

. (105)

Remark 4 The above formulation of bottom to apex map may cause discontinuities

on position and velocity states for whole stance map as in Figure 7. Because param-

eters of bottom to apex map are solved without considering the continuity of position

and velocity parameters. qθb and qṙb are continuous due to solution formulation, so

we only need to constrain continuity of qr(t) and qθ̇(t) at bottom instance. Note that,

the general expression for qr(t) and qθ̇(t) are as

qr(t) = l0(1 + a+ b sin(ω̂0)t) (106)

qθ̇(t) = ω(1− 2a− 2b sin(ω̂0)t) (107)

continuity constraints (note that ωab = ωba )

l0(1 + aab + bab sin(ω̂0abtbab)) = l0(1 + aba + bba sin(ω̂0batbba)) (108)

ωab(1− 2aab − 2bab sin(ω̂0abtbab)) = ωba(1− 2aba − 2bba sin(ω̂0batbba)) (109)

Using (81) and (93), relation between parameters aab, bab, aba and bba is found as

aab − bab = aba − bba (110)
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Figure 7: Left:Separate Approximate Stance Map for not variable compliance with
spring constants kc and kd. Middle: Approximate Stance Map for Variable Stiffness
with only parameter updates. A discontinuity is observed on stance map at bot-
tom instance. Right: Approximate Stance Map for variable stiffness with parameter
updates and velocity and position state continuity constraints

(110) is the constraint on aba and bba for a continuous stance map with variable

stiffness. (103) and (104) are unconstraint parametric solutions for aba and bba. To

prevent discontinuity for stance map,we assume trajectory of decompression phase

is invariant under small shift operation, so the offset term of qr(t) is needed to be

reformulated, which means that continuity constraint is used for calculation of aba

and bba is given by (104).

aba = aab − bab + bba (111)

Therefore, the stance map for variable stiffness case is given by

qr(t) =

 l0(1 + aab + bab sin(ω̂0abt)), if ttd ≤ t ≤ tbab
l0(1 + aba + bba sin(ω̂0ba(t+ tbba − tbab))), if tbab ≤ t ≤ tlo

(112)

qθ(t) =



qθtd + ωab(1− 2aab)(t− ttd)
+ 2babωab

ω̂0ab
[cos(ω̂0abt)− cos(ω̂0abttd)], if ttd ≤ t ≤ tbab

qθb + ωba(1− 2aba)(t− tbab)
+ 2bbaωba

ω̂0ba
[cos(ω̂0ba(t+ tbba − tbab))− cos(ω̂0batbba)], if tbab ≤ t ≤ tlo

(113)

5.2 Iterative Approximate Stance Map For Variable Stiffness

Similarly, using results of [10] and idea of apex return map partitioning into apex to

bottom and bottom to apex maps as in Figure 7, an iterative approximate stance
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map is derived. In [10] iterative bottom to apex map is already given and in a

similar manner apex to bottom iterative approximate map is derived and algorithm

for the iterative apex return map for variable stiffness is given. Moreover, a slightly

different iterative approximate stance map is derived by varied application of mean

value theorem from [10] for both apex to bottom and bottom to apex.

5.2.1 Apex to Bottom Map

SLIP stance dynamics for compression phase can be written by Hamiltonian mechan-

ics as

Hab =
1

2m

(
p2
r +

p2
θ

q2
r

)
+

1

2
kc(l0 − qr)2 +mgsqr cos(qθ) (114)

so the Hamiltonian vector field is given by

XHab
=


q̇r

q̇θ

ṗr

ṗθ

 =



pr
m
pθ
mq2r

p2θ
mq3r

+ kc(l0 − qr)−mgs cos(qθ)

mgsqrsin(qθ)

 (115)

Using the Hamiltonian vector and conservation of energy (since the SLIP tem-

plate does not contain any lossy component), the relation between the states can be

written as (note that pr is negative during compression and magnitude is found by

Hamiltonian inverse)

dts
dqr

(qr, qθ, pθ) =
m

pr(qr, qθ, pθ)
, (116)

dqθ
dqr

(qr, qθ, pθ) =
pθ

q2
rpr(qr, qθ, pθ)

, (117)

dpθ
dqr

(qr, qθ, pθ) =
m2gsqrsin(qθ)

pr(qr, qθ, pθ)
, (118)

pr(qr, qθ, pθ, Eab) = −H−1
ab (qr, qθ, pθ, Eab)

= −

√√√√2m
(
Eab −

1

2
kd(l0 − qr)2 −mgsqr cos(qθ)

)
− p2

θ

q2
r

(119)

where Eab represents total mechanical energy during compression phase which is

constant, Hab(qr, qθ, pr, pθ) = Eab.
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Using Theorem 1 and Observation 1 and under reasonable assumptions ξx is found

as in [10, Appendix A] for the following integrals.

∫ qr

qrtd

1

H−1
ab (σ, qθ, pθ, Eab)

dσ ≈ 1

H−1
ab (ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), Eab)

(qr − qrtd) (120)

∫ qr

qrtd

1

σ2H−1
ab (σ, qθ, pθ, Eab)

dσ ≈ 1

ξ̂2
xH
−1
ab (ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), Eab)

(qr − qrtd) (121)

∫ qr

qrtd

σ

H−1
ab (σ, qθ, pθ, Eab)

dσ ≈ ξ̂x

H−1
ab (ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), Eab)

(qr − qrtd) (122)

where ξ̂r is found for all of the integrals the same as

ξ̂x =
3

4
qrtd +

1

4
qr (123)

Thus, nonlinear coupled differential equations (116),(117) and (118) can be solved

iteratively as below and they are iterative approximate stance map equations for

compression phase.

t̂s(n+1)
(qr) = ttd −

m

H−1
ab (ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), E)

(qr − qrtd) (124)

q̂θ(n+1)
(qr) = qθtd −

p̂θn(ξ̂r)

ξ̂2
rH
−1
ab (ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), Eab)

(qr − qrtd) (125)

p̂θ(n+1)
(qr) = pθtd −

m2gsξ̂r sin(q̂θn(ξ̂r))

H−1
ab (ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), Eab)

(qr − qrtd) (126)

p̂r(n+1)
(qr) = −

√√√√√2m
(
Eab −

1

2
kc(l0 − ξ̂r)2 −mgsξ̂r cos(q̂θ(n+1)

(ξ̂r))
)
−
p̂2
θ(n+1)

(ξ̂r)

ξ̂2
r

(127)

where n is the iteration number.

The zeroth iteration can be any approximate analytical solution for contact phase.

In [10] three different initial approximate solutions are used and [3] may be a good

initial iteration for this iterative approximation.

This approximate stance map is a good and valuable application of mean value

theorem (Theorem 1). During derivations, g(t) is assumed to be always one and rest

of the function inside the integral is considered as function f(t), where g(t) and f(t)

are continuous functions described as in Theorem 1. For different f(t), different ξ̂r
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is calculated and they are turned to be the same as in (123). For slightly different

application of Theorem 1, f(t) can be selected for all integrals as given below and

g(t) is rest of functions inside the integral which is the integrable part of the function;

f(t) =
1

H−1
ab (t, qθ, pθ, Eab)

. (128)

Hence the approximate solutions of integrals are given by

∫ qr

qrtd

1

H−1
ab (σ, qθ, pθ, Eab)

dσ ≈ 1

H−1
ab (ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), Eab)

(qr − qrtd) (129)

∫ qr

qrtd

1

σ2H−1
ab (σ, qθ, pθ, Eab)

dσ ≈ 1

H−1
ab (ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), Eab)

(
1

qrtd
− 1

qr
) (130)

∫ qr

qrtd

σ

H−1
ab (σ, qθ, pθ, Eab)

dσ ≈ 1

2H−1
ab (ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), Eab)

(q2
r − q2

rtd
) (131)

and ξ̂r is found for approximate integral of f(t) as below and it is the same as

previous one because f(t) is also one of the previous function inside the integral

operator

ξ̂x =
3

4
qrtd +

1

4
qr. (132)

Therefore, new iterative approximate stance map for compression phase is given

by

t̂s(n+1)
(qr) = ttd −

m

H−1
ab (ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), E)

(qr − qrtd) (133)

q̂θ(n+1)
(qr) = qθtd −

p̂θn(ξ̂r)

H−1
ab (ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), Eab)

(
1

qrtd
− 1

qr
) (134)

p̂θ(n+1)
(qr) = pθtd −

m2gs sin(q̂θn(ξ̂r))

2H−1
ab (ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), Eab)

(q2
r − q2

rtd
) (135)

p̂r(n+1)
(qr) = −

√√√√√2m
(
Eab −

1

2
kc(l0 − ξ̂r)2 −mgsξ̂r cos(q̂θ(n+1)

(ξ̂r))
)
−
p̂2
θ(n+1)

(ξ̂r)

ξ̂2
r

(136)

where n is the iteration number.
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5.2.2 Bottom to Apex Map

Hamiltonian (total energy) function for the decompression phase is

Hba =
1

2m

(
p2
r +

p2
θ

q2
r

)
+

1

2
kd(l0 − qr)2 +mgsqr cos(qθ) (137)

inverse of Hamiltonian function is given by

H−1
ba (qr, qθ, pθ, Eba)

√√√√2m
(
Eba −

1

2
kd(l0 − qr)2 −mgsqr cos(qθ)

)
− p2

θ

q2
r

(138)

where Eba is total energy during compression phase at it is conserved. The relation

between Eba and Eab is given by Eq.(98).

Approximate iterative bottom to apex map is given in [10] as

t̂s(n+1)
(qr) = tb +

m

H−1
ba (ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), Eba)

(qr − qrb) (139)

q̂θ(n+1)
(qr) = qθb +

p̂θn(ξ̂r)

ξ̂2
rH
−1
ba (ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), Eba)

(qr − qrb) (140)

p̂θ(n+1)
(qr) = pθb +

m2gsξ̂r sin(q̂θn(ξ̂r))

H−1
ba (ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), Eba)

(qr − qrb) (141)

p̂r(n+1)
(qr) =

√√√√√2m
(
Eba −

1

2
kd(l0 − ξ̂r)2 −mgsξ̂r cos(q̂θ(n+1)

(ξ̂r))
)
−
p̂2
θ(n+1)

(ξ̂r)

ξ̂2
r

(142)

where n is the iteration number and ξ̂r is given by

ξ̂x =
3

4
qrb +

1

4
qr (143)

The zeroth iteration can be any approximate analytical solution for contact phase.

In [10] three different initial approximate solutions are used and [3] may be a good

initial iteration for this iterative approximation.

During the derivation of this iterative bottom to apex map, mean value theorem

has significant role. If f(t) and g(t) is defined as in Theorem 1, in [10] g(t) is always

choose one and rest of the function in integral is represented by f(t). For all nonlinear

integral equations ξ̂r is calculated and found to be the same for all ones as in (143).

42



For slightly different application of Theorem 1, f(t) can be selected for all integrals

as below and g(t) is rest of functions inside the integral which is the integrable part

of the function.

f(t) =
1

H−1
ba (t, qθ, pθ, Eba)

(144)

hence the approximate solutions of integrals are given by

∫ qr

qrb

1

H−1
ba (σ, qθ, pθ, Eba)

dσ ≈ 1

H−1
ba (ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), Eba)

(qr − qrb) (145)

∫ qr

qrb

1

σ2H−1
ba (σ, qθ, pθ, Eba)

dσ ≈ 1

H−1
ba (ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), Eba)

(
1

qrb
− 1

qr
) (146)

∫ qr

qrb

σ

H−1
ba (σ, qθ, pθ, Eba)

dσ ≈ 1

2H−1
ba (ξ̂x, q̂θ(ξ̂x), p̂θ(ξ̂x), Eba)

(q2
r − q2

rb
) (147)

and ξ̂r is found for approximate integral of f(t) as in (143) and it is the same as

previous one because f(t) is also one of the previous function inside the integral

operator.

Therefore, new iterative approximate stance map for decompression phase is given

by

t̂s(n+1)
(qr) = tb +

m

H−1
ba (ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), Eba)

(qr − qrb) (148)

q̂θ(n+1)
(qr) = qθb +

p̂θn(ξ̂r)

H−1
ba (ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), Eba)

(
1

qrb
− 1

qr
) (149)

p̂θ(n+1)
(qr) = pθb +

m2gs sin(q̂θn(ξ̂r))

2H−1
ba (ξ̂r, q̂θn(ξ̂r), p̂θn(ξ̂r), Eba)

(q2
r − q2

rb
) (150)

p̂r(n+1)
(qr) =

√√√√√2m
(
Eba −

1

2
kd(l0 − ξ̂r)2 −mgsξ̂r cos(q̂θ(n+1)

(ξ̂r))
)
−
p̂2
θ(n+1)

(ξ̂r)

ξ̂2
r

(151)

where n is the iteration number.

The general formulation of iterative apex return map for variable stiffness case is

derived with one missing important parameter which is the bottom leg length, qrb .

Bottom leg length is crucial since apex return map is divided into two parts (apex
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to bottom and bottom to apex maps) around the bottom leg length. The general

exact solution of the bottom length is not known, but several approximate solutions

can be used. First one is symmetric gait assumption and exact bottom length can be

calculated by using total energy relation since SLIP is verticular at bottom instance

for symmetric gaits.

Eab =
pθ

2mq2
r

+
kc
2

(l0 − qr)2 +mgsqr (152)

kc
2
q4
r + (mgs − kcl0)q3

r +

(
kcl

2
0

2
− Eab

)
q2
r +

p2
θ

2m
= 0 (153)

(153) is a quartic equation of bottom leg length and one solution of this quartic

equation which is real and less than or equal to the rest leg length gives the bottom

leg length.

Another way of approximate calculation of bottom leg length is usage of approx-

imate stance map in [3]. Approximate bottom leg length, qrb , is given by

qrb = l0(1 + aab − bab) (154)

where aab and bab are the same as in section 5.1.1.

6 Performance Analysis

Performance Analysis

6.1 Simulation Results

Simulation Results

7 Discussion

Discuss...
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8 Conclusion

To sum up ...
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