
  

  

Abstract— SLIP models are generally known as one of the 

best and simplest abstractions describing the spring-like leg 

behavior found in human and animal running, and have thus 

been subject to exhaustive investigation.  To exploit these 

findings in real robots, we utilize an operational space 

controller that projects the behavior of the SLIP model onto the 

dynamics of an actual segmented robotic leg.  Additionally, we 

introduce a method to compensate for the energetic losses at the 

impact collisions, which are not accounted for in the simplified 

SLIP assumptions.  This allows the direct application of existing 

dead-beat control strategies to arbitrary robotic legs, for which 

we can show that the collision and compensation effects in the 

actual leg enlarge the regions of stable running and reduce the 

minimally required locomotion speed.  The necessary joint 

torque profiles can be generated in large part passively, for 

example by using high compliance series elastic actuators. 

I. INTRODUCTION 

IOMECHANICAL studies suggest that the dynamics of 

the center of mass in running gaits (which include 

bounding, trotting, or galloping) can be described by the 

model of a spring loaded inverted pendulum (SLIP) [1, 2], 

which combines a prismatic mass-less elastic leg with a point 

mass at the Center of Gravity (CoG) (Fig. 1a).  Experiments 

have shown that this model appropriately represents the CoG 

motion of a large variety of animals and humans, and also 

produces ground reaction forces that closely match 

experimental recordings [3, 4].  

The discovery of using elastic legs for running gaits has 

quickly found its way into robotics.  Springs and pneumatic 

pistons were used instead of muscles and tendons [5, 6] to 

periodically store energy during the ground contact phase, 

recover it for take-off, and to protect the actuators and gears 

from hard impacts at landing.  Prismatic robotic legs 

developed along the lines of Marc Raibert’s seminal hoppers 

[7] resemble SLIP models not only in terms of their 

mechanical design, but also from a dynamics point of view 

[8-10]. 

In biomechanical research, theoretical studies focused on 

two major aspects:  Firstly, it was found that for certain 

parameter choices, the SLIP model is dynamically stable for 

single leg hopping [8-11] and walking [12].  This means, that 

when the state of the model is disturbed, the robot will 
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asymptotically return to its periodic steady state motion.  The 

same effect has also been reported for 3D models [13].  In 

addition to the passive dynamic self stabilization, various 

control strategies have been proposed in order to increase the 

rate at which disturbances are rejected and to enlarge the 

basin of attraction of the periodic motion.  Dead-beat 

controllers allow disturbance rejection within a single 

hopping period by appropriate adjustment of the angle of 

attack or stiffness of the leg spring [14].  This means that a 

constant velocity and apex height can be maintained 

continuously, even in extremely unstructured terrain [15]. 

In contrast to the prismatic elasticity that is assumed in the 

SLIP model, all biological and most robotic legs have a 

segmented structure with elasticities that act torsionally in 

their joints.  Studies using simplified models with mass-less 

leg segments showed that stable periodic running with such 

segmented legs is possible when the joint stiffness is 

properly adjusted [16].  Additionally, the nonlinear force-

torque relation that results from the leg segmentation can 

lead to a substantial increase of stable regions of operation 

[17].  Yet, in a real robotic leg, as well as in biological limbs, 

the mass and inertia of the individual segments dynamically 

couple the motion of the segments, and lead to impact-

collisions at touchdown, which are associated with energetic 

losses.  These are two effects that have a large influence on 

the CoG motion and should hence not be neglected.  

In this paper we strive to close the bridge between real 

robotic legs and the theoretical foundation provided by the 

SLIP model.  To this end, we use a low level operational 

space controller [18] that forces the CoG motion of an 

arbitrary segmented leg to behave exactly like its equivalent 

SLIP model, and introduce a method that compensates for 

the energy losses at touchdown by virtual pre-compression of 

the SLIP model.  These concepts are derived and presented 
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Fig. 1.  In this study, we impose the dynamics of the SLIP model 

(shown in a) on a model of an articulated leg in backward (b) and 

forward (c) configuration.  A low level operational space controller 

takes care of the dynamic coupling due to inertial effects, and a 

virtual spring pre-compression compensates for the impact losses at 

touchdown.   



  

in Section II, and applied to two different configurations of 

the model of an articulated leg developed at our lab (Fig. 1b-

c).  In Section III, we show that the two systems are truly 

equivalent, apply the established angle of attack or stiffness 

dead-beat controllers to the model of a real robotic leg, and 

show that the bulk part of actuator torques can be produced 

by purely passive elastic elements.  

II. METHODS 

A. SLIP model 

A spring-loaded-inverted-pendulum (SLIP) is described 

by a point mass
SLIP

m  that is attached to a mass-less prismatic 

spring with resting length
0
l  and leg stiffness k  (Fig. 1(a)).  

During flight phase, the model is only subject to the law of 

gravitation, and follows a parabolic trajectory.  The leg 

length
0
l and angle of attack

0
α are kept constant.  When the 

leg strikes the ground, the motion of the CoG is redirected by 

the exerted spring force in the leg
0

( )
leg

F k l l= −  that acts 

between a fixed ground contact point and the CoG: 

SLIP leg
m m= +r F gɺɺ , (1) 

where [ ],
T

SLIP
x y=r is the position of the point-mass and 

[ ]0,
T

E
g= −g  is the gravitational acceleration vector.  While 

so far no analytical solution has been found for this 

differential equation, approximate solutions exist [19, 20]. 

B. System Analysis: Apex return map 

The dynamics of the system are analyzed on a step-per-

step basis, where one step is defined as the period between 

two successive apex transits ( 0y =ɺ in flight).  A motion is 

called periodically stable, if it is periodic (the system 

reaches the same apex height and forward velocity after one 

step) and if deviations from this periodic solution decrease 

from one step to the next.  As the SLIP model is 

energetically conservative, apex height and forward speed 

are coupled by the given energy level.  This reduces the 

stability problem to a single degree of freedom, which can be 

analyzed with the one-dimensional return 

map
1

( )
i i
y P y+ = that maps the height of two subsequent apex 

transits (single-step analysis).  The stability of a fixed 

point
1i i

y y+ = = y* in this return map is determined by the 

slope of the map 1

i

i

i y y

dy

dy ∗

+

=

 in this point.  If it is smaller than 

one, an (energy conserving) error will vanish, and the 

solution is called stable.  Any non-energy conserving error 

can be decomposed into a component that remains constant 

(as the system itself is not able to generate or destroy 

energy), and a component that is energy-conserving and 

hence follows the laws stated above.  The region around a 

stable fixed point within which the system will return to the 

stable solution is called the basin of attraction.  

C. Articulated Leg 

The continuous mechanics of a robotic leg under support 

conditions can be described by  
T T

s s
+ + + =Mq b g J F S τɺɺ , (2) 

with the mass matrix M , the coriolis and centrifugal force 

vector b , the gravitational force g , the ground contact force 

s
F  (with the corresponding support Jacobian 

s
J ), and the 

actuation torques τ as well as the actuation matrix S , which 

separates actuated (joints) from unactuated (main body 

position/orientation) generalized coordinates q .  For the 

simplest planar articulated leg with a fixed main body pitch, 

we have 
T

MainBody MainBody Hip Kneex y ϕ ϕ =  q  with an 

actuator selection matrix 2 4x∈ℜS  that limits actuation to hip 

and knee joints (
T

hip kneeτ τ =  τ ).   

The contact force 
s

F  is 0 during flight and can be 

eliminated during stance by introducing the contact condition  

0,     0
s s s s s

= = = + =x J q x J q J qɺɺ ɺɺ ɺɺ ɺɺ . (3) 

This leads to a support consistent description [21] 

( ) ( )T T T

s s s s s
+ + + =Mq N b g J Λ J q SN τɺɺɺ ɺ , (4) 

with the support space inertia matrix ( ) 1
1 T

s s s

−−=Λ J M J and 

the dynamically consistent support null-

space
1 T

s s s s

− = − N I M J Λ J .  With this null-space, we can 

also express the instantaneous changes in velocities that 

occur when the leg strikes the ground at transition from flight 

to stance, and the contact point is brought to an immediate 

stop: 

s

+ −=q N qɺ ɺ  (5) 

D. Operational Space Control 

To impose the dynamics of a SLIP model onto such an 

articulated leg, we project the stance dynamics (including the 

support constraint) of the leg onto its aggregated center of 

gravity 
CoG

r , according to Oussama Khatib’s work on 

operational space control [18]: 

CoG

∗ ∗ ∗+ + =Λ r µ p Fɺɺ  (6) 

When prescribing a desired CoG trajectory, we can use this 

formulation to compute the necessary operational space 

force F , which is directly related to the required joint 

actuator torques τ  
T∗=τ J F  (7) 

For a detailed derivation of the individual components of 

this projection, please refer to [21] and [22].  For 

completeness of this paper, a short definition of each element 

is presented in the following:  

 

(i) support reduced Jacobian:  

( ) ( )( )
1

1 1T T

CoG s s s

−
∗ − −=J J M SN SN M SN  (8) 



  

(ii) task inertia: 

( ) 1
1 *

s

−∗ −=Λ JM SN J  (9) 

(iii) projected coriolis and centrifugal terms: 
1 1T T

CoG s CoG CoG s s s

∗ ∗ − ∗ ∗ −= − +µ Λ J M N b Λ J q Λ J M J Λ J qɺ ɺɺ ɺ  (10) 

(iv) projected gravitational part: 
1 T

CoG s

∗ ∗ −=p Λ J M N g  (11) 

E. SLIP dynamics as a control law 

During ground contact, the dynamics described by the 

SLIP model can now be directly imposed to the CoG motion 

of the robotic leg.  Solving (1) for 
SLIP

rɺɺ and inserting the 

result into (6) and (7) leads to the SLIP motion control law 

for any arbitrary robotic leg: 

( )1T

leg
m

m

∗ ∗ ∗ ∗ = + + + 
 

τ J Λ F g µ p  (12) 

Assuming that we have a perfect model and a feasible CoG 

motion described by the SLIP model, the CoG of the 

articulated leg will perfectly follow this prescribed motion.  

The first part of the sum in (12) assures thereby the correct 

CoG motion under support constraint, while ∗µ  and ∗p  

compensate for gravitational and dynamic coupling effects 

that are due to the articulated design. 

During flight phase, the ballistic CoG curve is inherently 

ensured by the lack of ground contact forces (constant 

impulse in x-direction, gravity influence in y direction).  The 

correct leg length and angle of attack for touchdown are 

easily achieved using inverse kinematic position control at 

joint level. 

F. Kinematic Rectification 

In contrast to the traditional SLIP model (spring between 

CoG and foot point), one could argue to use a kinematic 

equivalent SLIP model with a linear torsion spring in the 

knee joint [17].  This results in a linear stiffness as a function 

of the actual spring length l , segment length
seg
s , and 

rotational stiffness
rot

c : 

( ) 2 arccos
2

knee

seg

l
l

s
ϕ

 
= ⋅   

 
 (13) 

( ) ( ) ( )
( ) ( )( )

0

0
sin / 2

knee kneerot

seg knee

l lc
k l

s l l l

ϕ ϕ

ϕ

−
= ⋅

−
 (14) 

We will defer this idea until the final conclusion. 

G. Impact at landing 

In contrast to a SLIP model with a mass-less prismatic 

spring, a real robotic leg suffers from impacts at landing.  

Normal and tangential impulse substantially change the 

velocity at impact according to (5).  The post-impact CoG 

velocity can be expressed as a function of the SLIP 

parameters ( )0
, lα  and the pre-impact velocity 

CoG

−rɺ  

( )0

#

,

CoG CoG S CoG CoG

lα

+ −=
C

r J N J rɺ ɺ
�����

 (15) 

with #

CoG
J being the inverse of the CoG Jacobian under the 

condition of zero pre-impact joint velocity.  Unfortunately, 

this velocity change entails also an energy loss.  A 

comparison of different robotic legs with known mass and 

geometric parameters (Stanford Kolt [23-25], OLIE [26, 27], 

the leg of Curran and Knox [28, 29] and the two legs 

developed at our Lab [30, 31]) at a reasonable inner knee 

elongation angle of about 120° (180° would be completely 

stretched) shows an energy loss of 12 4%± , which is 

drastically increasing the more we extend the knee joint.  

While the rather theoretical SLIP model achieves continuous 

hopping without actuation, energy has to be introduced in the 

non-mass-less case to compensate for these losses.  There 

exist many strategies from an optimal control point of view 

(e.g. minimization of positive actuator work) to achieve this, 

but they would all cause the system to deviate from the 

desired SLIP dynamics.   

To circumvent this problem, we propose the use of a 

modified SLIP model with impact compensation (SLIPic), 

which differs from the regular SLIP model only in the fact 

that the leg spring is being pre-compressed at touch-down.  

I.e. at the instance of landing, the resting length of the leg 

spring is changed to 
0 0
l l l+ −= + ∆ , which increases the system 

energy according to 
20.5E k l∆ = ∆  (16) 

This energy matches the loss of kinetic energy of the CoG 

point in the collision, which must equal: 

( )
( )

2 2

0.5

    0.5

CoG CoG CoG

T T T T

CoG CoG CoG s CoG CoG s

E m

m

− +

− −

∆ = −

= −

r r

q J J N J J N q

ɺ ɺ

ɺ ɺ

 (17) 

In other words, instead of tracking the dynamics of a 

single SLIP model, we first track the dynamics of a model 

with leg length 
0
l − (which defines the kinematic positions at 

touchdown) and then switch to a model with leg length 

0
l l− + ∆ (which defines the ground contact forces during 

stance and the leg length at lift-off).  The difference 

l∆ compensates for the energetic losses that happen at the 

same instance.  I.e., SLIPic is energetically conservative, 

even in the presence of impact losses.  The detailed view of 

Fig. 4a depicts the instantaneous transfer of the lost kinetic 

energy into the virtual spring energy at the point of collision. 

H. Dead beat high level control and SLIPic model 

There exist various control strategies for continuous 

height and speed running with SLIP models in different 

terrain [14, 15], and all of them can be directly applied to 

SLIPic.  The general idea is to solve the mapping 

[ ] [ ]
1

, ,
SLIPdynamics

i i
y x y x

+
→ɺ ɺ  (18) 

as a function of the angle of attackα and the spring 

stiffness k .  Depending on the desired change in apex height 

and velocity (which must be energetically conservative), 

α or k  are adapted to reach the goal state (index i+1) 



  

within one single hop (dead beat).  Since the stance phase 

dynamics are not solvable in closed form, this must be done 

numerically by repeated simulation or with an approximate 

analytical solution [19, 20].  However, as the SLIP dynamics 

are fairly simple this is a computationally feasible task.   

With the presented framework, the exact same control 

approach can now be applied to an actual robotic leg, by 

computing (18) for the SLIPic model, and imposing the 

resulting dynamics on the actual leg.  Except for the two 

additional equations (15) and (17), solving this control 

problem is computationally as expensive as solving the map 

(18) for a SLIP model and hence possible in real time.  

III.  RESULTS 

A. Model equivalence 

In a first set of trials, we compared the motion of a SLIPic 

model with the simulation of an articulated robotic leg to 

which we applied the proposed operational space controller.  

Fig. 2 shows that the SLIPic model (black solid line) behaves 

as expected and is exactly followed by the low level 

controlled articulated leg (red dashed line).  Both models 

were started with the same initial conditions of the CoG and 

same model parameters massm , angle of attackα , spring 

constant k , and spring length
0
l .   

For comparison, a SLIP model without impact 

compensation (grey dotted line) was simulated in parallel.  

While the ballistic flight curve is of course identical, a 

different angle of attack (24.3° compared to 17.8° for the 

articulated leg) had to be chosen, such that the apex height 

remains constant for continuous hopping. 

 

B. Self-stabilization 

Various studies have shown the existence of self-stabilizing 

effects in the SLIP model.  For a certain combination of 

stiffness, angle of attack, and energy level, stable fixed 

points, respectively basin of attraction can be found.  Similar 

studies have been performed with segmented legs, whereby 

segment mass and inertia effects (and consequently collision 

effects) were completely neglected.  We performed the same 

investigations with the SLIPic-equivalent of a real articulated 

robotic leg.  Stable and instable fixed points (that define the 

basin of attraction) were found by varying the angle of 

attackα , spring stiffness k , energy level E and initial apex 

height 
i
y . 

 

In Fig. 3a, the basin of attraction of a SLIP runner and an 

articulated leg in forward motion (Fig. 1c) are compared.  

The articulated leg (respectively its SLIPic equivalent) 

shows stable fixed points for a larger variety of parameters 

resulting in a substantial increase of the basin of attraction.  

 
Fig. 3.  The basin of attraction for the SLIPic and the SLIP model 

were calculated as a function of the angle of attack α , spring 

stiffness k and energy level E.  The SLIPic equivalent of an 

articulated leg in forward as well as backward configuration shows a 

much larger basin of attraction than the SLIP model due to the 

collision at landing.  Stable fixed points are found at lower speeds. 

 
Fig. 2.  The articulated leg (red dashed) and its equivalent SLIPic 

model (black solid) running with the same parameters 17.8α = °  and 

0.336l m= perform exactly the same CoG motion.  As a comparison, 

a SLIP model without impact compensation (grey dotted) is 

controlled at the same fix point with the parameters 24.3α = ° and 

0.3l m= .  While having the same flight curve, there is no 

instantaneous velocity change due to the impact at landing 

 



  

Similarly, when keeping the stiffness constant and 

identifying the self-stabilizing area for different energy 

levels, the real robotic leg shows stable fixed points for a 

larger parameter and initial condition set.  Stable operation 

with low energy and low forward speed is only possible with 

the articulated leg.  

C. Dead beat controlled hopping 

 Continuous hopping on uneven terrain requires a step-to-

step adaptation of the system parameters α or k  depending 

on the ground level height.  Established strategies [14, 15] 

relay on searching fixed points in the apex height return map.  

We implemented an impact angle control for the articulated 

robotic leg.  The stiffness was downscaled from the stiffness 

found in human running [11] to our robotic leg size.  The fix 

point search as a function of the impact angle and energy 

level is done using the SLIPic model and holds as the input 

for the low level operational space controller of the real 

robotic leg.  Fig. 4 shows the expected dead beat behavior of 

the articulated leg for hopping on uneven terrain.  During 

ground contact, energy is stored in the virtual spring and 

apex height as well as forward velocity is kept constant.  In 

addition to the purely passive SLIP model, we can change 

the energy level of the articulated leg.  This is done in the 

same natural way of an additional spring pre-compression at 

the point of impact.   

IV. CONCLUSION 

In this paper we extended the established SLIP model to 

include systems which are not energetically conservative but 

are subject to impact losses at touchdown and introduced the 

impact compensating SLIPic-model.  We then used a low 

level operational space controller to impose the SLIPic 

dynamics onto an actual robotic leg.  In combination, these 

two steps allow the application of well established high level 

dead beat controllers to real robots.  

The main motivation of using SLIP models to control 

legged robots originates from the simple but still very 

accurate description of human and animal biomechanics.  

Exhaustive research based on human running data has shown 

that SLIP dynamics is more than just a metaphor; they 

literally describe the CoG control target.  In other words, 

SLIP models are a good description of the natural dynamics 

of highly complex systems.  Furthermore, theoretical 

research in the biomechanics field yielded advantageous 

properties such as dynamic stability and the possibility for 

dead beat control.  

Using the presented approach of this paper is a substantial 

step towards closing the gap between these theoretical 

foundations and the application of SLIP controllers in real 

robots.  In contrast to [32] were the virtual leg behavior must 

be as close as possible to the SLIP dynamics, we ensure 

SLIP equal motion of the CoG for arbitrary robotic legs 

using a low level operational space controller.  The whole 

articulated leg dynamics can now be described by a SLIP 

model including impact compensation.  This has the great 

advantage that all established SLIP dead beat controllers can 

be applied with nearly the same computation effort for the 

theoretical SLIPic model as well as for real robotic legs.  

Furthermore, studies of the disturbance dynamics of an 

articulated leg under the influence of collisions were 

performed.  A large increase in stable fixed points and basins 

of attractions compared to the SLIP model were found.  

These results are similar to those documented in [17], but 

must have a different offspring.  In [17], the use of mass-less 

legs, limits the explanation to the nonlinear relation between 

the force acting on the point mass and the torque in the knee.  

The results in this study with a real robotic leg are different.  

We have a SLIP equal stance phase with a linear stiffness.  

The stabilization effects must hence originate entirely from 

the collision.  A somehow intuitive explanation is that an 

increase in forward velocity automatically results in a higher 

impact in the same direction and consequently in larger CoG 

speed change in that direction (which equivalently holds for 

the normal direction).   

So far, we are only controlling the joint torques and 

completely neglect the actuator side.  We based the 

mechanical parameters on our recently developed robotic leg 

driven by series elastic actuators.  Considering passive 

dynamics and hence energy efficiency, most of the joint 

torque should be provided by the torsion joint spring itself.  

 
Fig. 4.  Continuous hopping on uneven ground is achieved with a 

deadbeat controller that adjusts the angle of attack.  The spring is pre-

compressed with the amount of energy that is lost in collision.  (a) 

shows the energy distribution between kinetic, potential, and virtual 

spring energy.  At the fourth stance period, the energy level is changed 

by adding an additional amount of spring pre-compression resulting 

later in an increase of kinetic energy.  (b) Consequently, a new forward 

speed is achieved while (c) the apex height is kept constant for a 

varying ground level. 

 



  

Fig. 5 shows the torque-angle relationship that is necessary 

on joint level for hopping on different energy levels.  As 

these curves show virtually no hysteresis, the necessary 

torques could be generated to a large part passively, thus 

reducing the necessary actuator power and energy 

consumption. 

Additionally, the necessary characteristics only depend on 

the selected energy level and are nearly independent from 

hopping height and velocity.  Which further facilitates the 

use of passive elements and thus paves the road for highly 

efficient legged locomotion 
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Fig. 5.  The torque-deflection curve at the knee joint is plotted for 

hopping at three different energy levels.  As these curves show 

virtually no hysteresis, the necessary torques can be generated 

passively, for example by an appropriately tuned spring.  The 

kinematic rectification motivated in Section II.F shows that despite 

all dynamic effects, linear springs in the joint can be utilized (b).  The 

spring characteristics are only depending on the absolute energy level 

and are nearly indifferent to changes in the forward velocity and 

jumping height.  The shaded area under each curve illustrates the 

range of characteristics that are necessary when both parameters are 

changed. 


