

# Hybrid Electric-Pneumatic Actuator (EPA) for Legged Locomotion

Aida Mohammadi Nejad



#### **Goal of project**



#### 



#### **Goal of project**



#### 



#### locomotor sub-functions



**Bouncing** (axial leg function)

describes the elastic rebounding of the stance leg (ground contact) to counteract gravity

#### Leg swinging

a rotational movement of the swing leg combined with a minor axial leg movement for ground clearance

Balancing (posture control)

we focus on **bouncing** as **the first locomotor sub- function** and how the new actuator can be advantageous
for bouncing



Hopping in place



#### **Goal of project**



#### **Design**

a new hybrid actuator

to outperform existing actuators in efficiency and robustness over the operational region required for human-like gaits



#### **Different types of acctuators**



- Pneumatic artificial muscles (PAM)
- Electric motors (EM)
  - DDEM: direct drive electric motor
  - GEM: geared electric motor
- Series elastic actuators (SEA)
  - Variable impedance actuators (VIA)
- Hydraulic actuators (HA)
- EPA: Combination the EM and PAM

| Properties                       | PAM       | DDEM      | GEM       | SEA       | на        | EPA       |
|----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Bandwidth                        | low       | high      | high      | low       | high      | high      |
| Versatility in torque generation | medium    | low       | high      | low       | high      | very high |
| Achievable range of motion       | medium    | high      | high      | medium    | medium    | very high |
| Achievable velocity              | medium    | high      | medium    | medium    | high      | high      |
| Achievable torque                | medium    | medium    | high      | medium    | very high | high      |
| Efficiency                       | high      | high      | high      | very high | very low  | very high |
| Similarity to human actuators    | high      | very low  | very low  | medium    | very low  | very high |
| Robustness (impact resistance)   | high      | low       | very low  | high      | high      | high      |
| Weight                           | very low  | low       | medium    | medium    | medium    | low       |
| Size                             | medium    | low       | medium    | medium    | medium    | medium    |
| Noise                            | high      | very low  | very low  | very low  | high      | high      |
| Price                            | very low  | low       | medium    | medium    | very high | low       |
| User friendliness                | very high | high      | high      | medium    | medium    | high      |
| Intrinsic compliance             | very high | very low  | very low  | very high | very low  | very high |
| Backdrivability                  | high      | very high | low       | very high | very low  | high      |
| Position controllability         | low       | very high | very high | high      | very high | high      |
| directions of actuation          | 1         | 2         | 2         | 1         | 2         | 2         |



## **Our approach**



Lauflabor



## **Our approach**











#### **Key question**



# What are the fundemental mechanical design and control principles in human hopping?

**Mechanics: musculosketal system** 

**Control: neular control** 

Experiment Suggestion Measurements?



#### **Previous Hopping Experiments**



- 8 Subjects
- Hopping experiments:
  - ✓ Preferred hopping height and frequency
  - ✓ Hopping with maximum hopping height which is possible for subject
  - ✓One leg hopping: right leg and left leg
  - ✓ Specified frequency hopping: 1 Hz, 2 Hz, 3 Hz
- Each experiment repeated 3 times
- Each experiment took 20 seconds



#### **Some Suggenstion for new Experiments**



- 8 more Subjects
- Hopping experiments:
  - ✓ Preferred hopping height and frequency
  - ✓ Hopping with maximum hopping height which is possible for subject
  - ✓One leg hopping: right leg and left leg
  - ✓ Specified frequency hopping: 1 Hz, 2 Hz, 3 Hz?
  - ✓ Perturbed hopping, perturbation on one leg and both legs
- Each experiment repeated 3 times
- Each experiment: 25 seconds
- Measuring EMG at least for one leg
- Oxygen consumption

