

Humanoid Robotics Research at KIT

Tamim Asfour

Institute for Anthropomatics and Robotics, High Performance Humanoid Technologies

http://www.humanoids.kit.edu

Institute for Anthropomatics and Robotics

10 Labs, approx. 150 members

High Performance Humanoid Technologies

Asfour

Vision and Fusion

Beyerer

Dillmann

 Intelligent-Sensor-Actuator System

Hanebeck

 Intelligent Industrial Robotics

Hein

Cognitive Systems

N.N.

Stiefelhagen

Interactive Systems

 Intelligent Process Control and Robotics

Wörn

 Applied Technical Cognitive Systems

Zöllner

H2T team

Humanoids@KIT

H²T Research Topics

The ARMAR Family: The systems

The ARMAR Family: The mechatronics

Humanoids in the real world

- Engineering Humanoids
- Grasping and manipulation
- Learning for human observation

Natural Interaction and communication

© SFB 588

ARMAR-IIIa and ARMAR-IIIb

- 7 DOF head with foveated vision
 - 2 cameras in each eye
 - 6 microphones
- 7-DOF arms
 - Position, velocity and torque sensors
 - 6D FT-Sensors
 - Sensitive Skin
- 8-DOF Hands
 - Pneumatic actuators
 - Weight 250g
 - Holding force 2,5 kg
- 3 DOF torso
 - 2 Embedded PCs
 - 10 DSP/FPGA Units
- Holonomic mobile platform
 - 3 laser scanner
 - 3 Embedded PCs
 - 2 Batteries
- Weight: 150 kg

Fully integrated humanoid system

ARMAR-III in the RoboKITchen

- Object recognition and localization
- Vision-based grasping
- Hybrid position/force control
- Combining force and vision for opening and closing door tasks
- Collision-free navigation
- Vision-based selflocalisation
- Multimodal humanrobot dialogs
- Continuous speech recognition
- Learning new objects, persons and words
- Audio-visual tracking and localization
- **...**

Combining vision, action and haptics for grasping

Initial object hypotheses

Generate hypotheses based on Color, Geometric primitives and Saliency

Hypothesis 49 is chosen for verification by pushing

Integrating language, planning and execution with OACs Karlsruhe Institute of Technology

What's next?

- SecondHands: A robot assistant for industrial maintenance
 - 5 years project in Horizon 2020 (2015 2020)
 - Ocado, KIT, Sapienza, EPFL, UCL
- The robot will provide help to maintenance technicians in a warehouse environment
- We expect advancement in the automation of the relatively unexplored domain of production machine maintenance
- Reduction in production machinery maintenance costs

Humanoids in the real world

Grasping and manipulation

Learning for human observation

© SFB 588

Natural Interaction and communication

Learning from human observation

Learning from observation

Karlsruhe Institute of Technology

- Building a library of motion primitives
- Dynamic movement primitives (DMP) for discrete and periodic movements

KIT whole-body human motion database

https://motion-database.humanoids.kit.edu/

The KIT whole-body human motion database

Learning from human observation

- Hierarchical action segmentation which considers motion and relevant objects
 - Semantic segmentation based on object-hand and object-object relation
 - Motion segmentation based on trajectory characteristics (motion dynamics)

Converted Demonstration

Hierarchical Segmentation

No contact	Cup in left hand			No contact
Grasp	Lift	Pour	Place	Retreat

Hierarchical action segmentation

Learning from observation – prepare the dough

Examples of manipulation actions

- Dataset:
 - Vision data
 - Marker data (VICON) of humans and objects

10 Different Objects

Grounding with psychological experiments

 Psychological experiments related to the "Perception of Time" in humans support our action segmentation approach

In collaboration with the University of Groningen (Hedderik van Rijn, Experimental Psychology & Statistical Methods and Psychometrics) in the context of the EU FET-ProActive Project TimeStorm (www.timestorm.eu)

What's next?

- I-SUPPORT: ICT Supported Bath Robot
- Deliver a service robotics system in the bathroom environment that is absolutely safe and reliable from all end user, operational and industrial perspectives

Learning motor skills for "SOFT" bathing robot

Mapping

Wash back action

What's next?

Modelling surgical skills

- Semantic segmentation of surgical demonstrations
- Alphabet of surgical skills and "language of surgery"
- Prediction of the next action or next operation phase
- Intraoperative assistance through predictive interfaces control

ARMAR-IV: Mechano-Informatics

Karlsruhe Institute of Technology

- Torque controlled
- 3 on-board embedded PCs
- 76 Microcontroller
- 6 CAN Buses
- 63 DOF
 - 41 electrically-driven
 - 22 pneumatically-driven (Hand)
- 238 Sensors
 - 4 Cameras
 - 6 Microphones
 - 4 6D-force-torque sensors
 - 2 IMUs
 - 128 position (incremental and absolute), torque and temperature sensors in arm, leg and hip joints
 - 18 position (incremental and absolute) sensors in head joints
 - 14 load cells in the feet
 - 22 encoders in hand joints
 - 20 pressure sensors in hand actuators
 - **...**

More than mechatronics

ARMAR-IV

made@KIT

70 kg

170 cm

ARMAR-IV

Karlsruhe Institute of Technology

- 63 DOF
- Torque-controlled!

Multi-contact active compliance balancing controller

Taxonomy of whole-body poses

Validation of the taxonomy

- Analyses of different human locomanipulation tasks with supports
- Reference model of the human body (Master Motor Map: MMM) with 104 DOF
- Motion capture data mapped to reference model of the human body (MMM)
- Automatic segmentation to detect support poses and transitions
- Automatic generation of a taxonomy of the poses and their transitions in der motion data

Analysis of pose transitions

Analyzing Whole-Body Pose Transitions in Loco-Manipulation Tasks

Christian Mandery, Júlia Borràs, Mirjam Jöchner, Tamim Asfour

ARMAR-5: Wearable Humanoid

- Maximal "axial" force 2900 N
- Force at nominal motor torque 930 N
- Speed 300 mm/sec

ARMAR-5: Interface to the human body

Force sensor suit

- Non-invasive, EMG-free Interface to the human body
- Learn interaction force pattern between human and suit and use them for prediction "feel the muscle activation"

- EMG unreliable
- EMG can be used to train a classifier as well as to study correlations between EMG pattern and force pattern

ARMAR-5: Interface to the human body

Thanks to ...

- German Research Foundation (DFG)
 - SFB 588 www.sfb588.uni-karlsruhe.de (2001 2012) DFG Deutsche Forschungsgemeinschaft
 - SPP 1527 autonomous-learning.org (2010)
 - SFB/TR 89 www.invasic.de (2009)
- European Union
 - SecondHands www.secondhands.eu (2015-2019)
 - TimeStorm www.timestrom.eu (2015-2018)
 - I-Support www.i-support.eu (2015-2017)
 - Walk-Man www.walk-man.eu (2013-2017)
 - KoroiBot www.koroibot.eu (2013-2016)
 - Xperience www.xperience.org (2012-2015)
 - GRASP www.grasp-project.eu (2008-2012)
 - PACO-PLUS www.paco-plus.org (2006-2011)
- Karlsruhe Institute of Technology (KIT)
 - Professorship "Humanoid Robotic Systems"
 - Heidelberg-Karlsruhe Research Partnership (HEiKA)

Thanks for your attention

