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Abstract

Hill-type muscle models are commonly used in biomechanical simulations to predict passive and active muscle
forces. Here, a model is presented which consists of four elements: a contractile element with force-length
and force-velocity relations for concentric and eccentric contractions, a parallel elastic element, a series elastic
element, and a serial damping element. With this, it combines previously published effects relevant for muscular
contraction, i.e. serial damping and eccentric force-velocity relation. The model is exemplarily applied to arm
movements. The more realistic representation of the eccentric force-velocity relation results in human-like
elbow-joint flexion. The model is provided as ready to use Matlab@®) and Simulink®) code.
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1. Introduction

Hill-type muscle models are commonly used in biomechanical simulations to predict passive and active muscle
forces during various movements. They predict muscle forces on an organ level and are therefore considered
macroscopic muscle models. In mechanics, Hill-type muscle models are classified as 0-d elements due to the
lack of mass and inertia. Such a model’s output is a one-dimensional force, which is applied to skeletal models
between origin and insertion points, or sometimes as moments by means of (constant) lever arms. The models’
inputs are muscle length, or more precisely muscle-tendon-complex (MTC) length, MTC contraction velocity,
and neural muscle stimulation. Typically, Hill-type muscle models consist of three elements: a contractile
element incorporating force-length and force-velocity dependencies, a serial and a parallel elastic element in
diverse configurations [30, 291 27, [5 10, 14, 25]. Various extensions account for physiologically observable
effects, such as contraction history effects [I'7, 211, [16], recruitment patterns of slow- and fast twitch fibers [28],
high frequency oscillation damping [6, 24], or force in eccentric contractions [27] [, [26]. The model presented
here combines the latter two.

In eccentric contractions the muscle is elongated due to external forces exceeding the force the muscle is
currently generating. In contrast to the extensively studied concentric contractions, considerably less data has
been published on eccentric contractions — presumably due to the experimental difficulties. It has, however,
been observed that during eccentric contractions single muscle fibers and whole muscles produce forces exceeding
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Figure 1: The structure of the MTC model. Ijrr¢ is the sum of the length of the contractile element (CE) lcg plus the length of
the serial elastic element (SEE) lggr. The length of the parallel elastic element (PEE) equals lcg. The serial damping component
SDE was introduced by Giinther et al. [6].

those of isometric (at constant length) contractions [12], 11} 20, 26]. Furthermore, the eccentric muscle force
depends on the contraction velocity. For small lengthening velocities, the force rapidly increases with increasing
velocities [12], [T, [20L 26]. For higher lengthening velocities (where the experimental difficulties increase, e.g.,
due to fiber damage) some studies report force saturation [I1], a slower increase in force [26], or even a slow
reduction with increasing lengthening velocity, depending on the experimental setup. Van Soest and Bobbert
[1993] proposed a muscle model where the eccentric force-velocity relation is described by a hyperbolic relation.
The advantages of this approach are the possibility to use similar equations for concentric and eccentric force-
velocity relation and the good approximation of the experimental data.

The biomechanical function of the eccentric force-velocity relation has also been examined. Seyfarth et al.
[23] showed in a simulation study that the jumping performance of long jumps is greatly influenced by the
eccentric force-velocity relation. Here, a key feature is the relatively low metabolic energy required for relatively
high eccentric forces [15]. Also, the increased muscle force in eccentric contractions together with the reduced
force in concentric contractions can have an effect similar to a mechanical damper. With this, the muscle
can dissipate movement energy, e.g. during down-hill walking [I5], and provide rapid stabilizing reactions to
perturbations in hopping [§].

Giinther et al. [6] found, that the low but significant damping within the passive tendinous tissue [I3}, 1] is
responsible for the dampening of high-frequency oscillations. Considering such a damping in the series elastic
structure of a Hill-type muscle model predicts muscle forces more realistically. Otherwise, unrealistic high
frequency oscillations may occur when simulating contractions against a mass [6].

For complex biomechanical simulations of human movement, both series elastic damping and the character-
istic eccentric force-velocity relation have to be considered. Here, we propose a Hill-type model based on van
Soest and Bobbert [27], Giinther et al. [6], and Morl et al. [I8], which models both effects. Furthermore, we pro-
pose a robust method to find the initial conditions for the muscle model’s internal state. With these extensions,
the muscle model can be used in multi-body simulations of many different human and animal movements. We
provide the model implemented in Matlab®)/Simulink@®) as electronic supplementary material and hope, that
this facilitates the biomechanical research on biological movement.

2. Muscle model

The model of the muscle tendon complex (MTC) consists of four elements (see Fig.: the contractile
element (CE) modeling the active force production, the parallel elastic element (PEE) arranged in parallel to
the CE, the serial elastic element (SEE) in series to the CE (length lsgg), and the serial damping element
(SDE) in parallel to the SEE. The four elements fulfill the force equilibrium

Fep(log,log,q) + Fpep(los) = Fspr(lor, lure) + Fspe(los, log, Iure, q) - (1)

In this equation, the force dependencies are also specified. [ and [ with the respective subscripts symbolize
length and contraction velocity of the respective elements. ¢y < ¢ < 1 represents the muscles activity with
q = qo = 0.001 for minimally activated muscle and ¢ = 1 for maximally activated muscle. The lower limit
qo > 0 captures the fact that in a whole muscle with it’s vast number of contractile proteins some cross bridges
will always generate force even in the absence of neural stimulation. Additionally, the model’s equations generate
a singularity for ¢ = 0 — the lower limit is thus a precondition for the simulation. The elements’ forces in Eq.
will be explicitly formulated in the following paragraphs. The kinematic relations between the elements are
lserg = lspE, lpEE = lce, and lyre = lsee + loE.
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Figure 2: Force-length relation of the contractile element (CE, solid line) and the parallel elastic element (PEE, dashed line) starting
at 0.95 - lCE,opt~
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Figure 3: Force-velocity relation of the contractile element (CE). a) For concentric contractions [6] and b) the new extension for
eccentric contractions based on van Soest and Bobbert [27]. ¢) comparison of the new force-velocity relation (solid line) to the
previous (dashed line, [6]). Also shown are the hyperbolas’ asymptotes -A = -A,¢; Frnaz and B = Brelog,opt-

2.1. Contractile element CE

The contractile element CE represents the active fiber bundles in the muscle. The CE force depends on the
current length of the muscle fibers. This force-length relation (Fig.|2) is modeled as

VCE,limb
| @

Here, lc g, opt is the optimal fibre length for which Fisom (log,opt) reaches a maximum. AWy, depicts the width

of the normalized bell curve in the respective limb (ascending or descending) and ve g jimp its exponent.
Furthermore, the CE force depends on the current fiber contraction velocity log (with lor < 0 for concentric

contractions, indicated by the index “c”). This force-velocity relation [9] is modeled as a hyperbola (see Fig. [Bp)

ZCE/ZC'E,opt -1

FisomUCE) = €xXp {_ AVV[ b
im

qFisom + A
ick
BrellcE,opt

FCE,c(iCE S O) - Fmaz - Arel . (3)

The parameters A, and B, are the normalized Hill “parameters” [9]. Fihax is the maximum isometric force.
As shown by experiments and previously described [29] 27| [6], the Hill parameters depend on length log

and activation ¢: Ayei(lce,q) = Areto La,.,(lce) Qa,.,(q) and By (lce,q) = Breio Lp,.,(lce) @B,.,(q). The
dependencies are modeled as

_ 1 ) lCE' < lCE,opt
LAMZ (ZCE) B { Fisom(lCE) ) lCE > lCE,opt (4)

Lp,.(lcg)=1. (5)



and

Qavna) = 11+ 30) (©
Qp,.(0) = (34 49). )

In the previously published versions of this model [6] 18], the force-velocity relation as described above was
not explicitly modeled for eccentric contractions (lcg > 0, lengthening muscle, indicated by the index “¢”). The
relation given in Eq. would also give a result for l¢g > 0 (see Fig. |3, dashed line), which, however, deviates
from experimental findings. Here, the model was extended for eccentric contractions (see Fig. )

The eccentric force-velocity relation can also be described by a hyperbola [27]. For this approach, Eq.
was used, only with A,¢; . and By . as the hyperbola parameters for the eccentric branch

qusom + Arel,e
lop
Brel,elcE,opt

FCE,e(l.CE > 0) = Fmaaz - A'r‘el,e . (8)

The eccentric hyperbola has to continuously extend the concentric branch at o = 0, which is already fulfilled
by Eq. as the term ¢Fjsop, is the same as in the concentric branch. To define A, . and By ¢, two additional
constraints are required [27]. The ratio of the derivatives of the force-velocity relation at the transition point
(isometric condition g = 0) can be described by one parameter S,

dFCE,e

dice ligp=0

dFCE,c

dice ligp=0

- €

(9)
Also, the asymptotic force approached for high eccentric velocities can be defined as Fog — FeqFjsom Fmax for

lcg — 400. Thus, we find
Arel,e = *Fequsom . (10)

Brei,e can now be derived from Eq. @[) Inserting the derivatives, Eq. @D writes

1
_(qusom + Arel,e) Brel,elCE,opt _(qusom + Arel) BrollcE,opt
Fmaa: : - = Se Fmaw ;
(1 _ lce )2 (1 o lck )2
Biret,elcE,opt BreilcE,opt

ice=0 ice=0

Evaluating the equation in the isometric condition lop = 0, ie. at Fcg = Fop,e = qFisomFmax, solving for
By e and inserting Eq. , results in

qusom + Arel,e - S qusom + Arel
Brel7e e Brel
Brel (qusom + Arel e)
& B = :
rebe Se (qusom + Arel)
Bre 1- Fe
_ Brall=F)_ ; ) (11)
Se (14 )

The resulting eccentric force-velocity relation is shown in Fig. [3pb. The difference to the previous models is
depicted in Fig. Bk.

2.2. Parallel elastic element PEE

The characteristics of the parallel elastic element are modeled as

[0 sl <lpeppo
Frep(lon) = { Kppg (lce —lperp,0)""P2 |, lce > lpEEo (12)

with Kpgrg = FrPEE C

lom o Wit S =Lrp5.0)) PEE and lprgpo = LpEE,0lCE,0pt With the three free pa-

rameters ]:PEE7 ACPEE,O and VPEE [6]
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Figure 4: The damping coefficient dsp g linearly depends on the the muscle tendon force Fysrc. Rsppg is the minimal damping
coefficient for Fy7c = 0. DspE,max is the damping coefficient at Fprrc = Fmax.

2.8. Serial damping element SDE
The serial damping element force

Fspe(lcp,lcp, lurc,q) = 4
DspEmaz - <(1 — Rgpp) - Ferllenlopaltirpnlics) RSDE) ' (iMTC B iCE)

Fraz

(13)

is a viscous damper-like force, with a damping coefficient depending on the muscle output force Fyrc =
Fer(ler,lcr,q) + Fper(lcg) [18]. The parameter Rspgr < 1 represents the damping at Fyre = 0, the
multiplier Dgp g, mas the maximum damping coefficient at Farrc = Fnax (see Fig. [4).

2.4. Serial elastic element SEE

The force Fsgp acting in the serial elastic element (SEFE) is modeled by a non-linear toe zone with a linear
continuation [6]:

0 ,lse <lseEo
Fspr(lsg) =3 Ksgpn (lse —lspro0) 55" yse <lseEnu (14)
AFsgpo+ Ksege, (Ise —lsgenu)  lse > lseenu

All parameters introduced in Eq. ( can be derived from the parameters lsgpo (rest length), AUsgg nu
(relative stretch at non-linear-linear transition), AFsgg o (both force at the transition and force increase in the
linear part), and AUggg, (relative additional stretch in the linear part providing a force increase of AFggg ):

lseenu = 1+ AUsggnu) lsEE0
vsee = AUsgg nu/AUseR,
Ksppn = AFsppo/(AUsge i lser0) 55"

Ksgpi = AFsgpo/(AUsgg,lsEr o)

2.5. Contraction dynamics

~ In a multi-body simulation, the input to the muscle model is the muscle length {57, the contraction velocity
Iyre. We can also assign a value to the activity g as the second CE state variable. The time development of
the internal degree of freedom (I¢cg) can now be calculated by solving the differential equation

log =los(lop, lure, lure, q) - (15)

This differential equation can be formulated by solving the force equilibrium (Eq. ) for ic, ending up with
a quadratic equation in log [6] [18]: _ )
0=Cy- 25 +Cr-lop+Co (16)

The coefficients are

Cy = dsp,maz(lce, q) - (RSE - (Arel(lCE7Q) - FP%?) (1- RSE)>

Ci=- <C2 “Iyre + Do+ Fspe(lure,log) — Free(lor) + Fna - Ava(los, Q)) (17)

Co = Do - lyre +log.opt - Bre(lor, @) - (Fspe(lure,lor) — Frep(lor) — Fmar - 6 - Fisom(log))



using

F l
DO = lCE,opt : Brel(lCE',q) : dSE,mam(lCEa Q) . (RSE + (]- - RSE) . (q : Fisom(lCE) + W)) (18)

as an abbreviation. The appropriate solution of Eq.

—C1—+/CZ—4:C5-Cy i <0
CE =

2.Ca

lCE = 701,5+m (19)

2.Cs.. ZCE >0

depends on whether the muscle operates in concentric or eccentric mode. Cj ., Ca., and C3 . indicate, that
all instances of Ay and By in the coefficients (Eq. (L7)) have to be replaced by Ayere (Eq. (10) and Bege
(Eq. ), respectively.

With this approach, the contraction dynamics for the eccentric branch of the force-velocity relation can be
calculated in the same way as the concentric branch. Only two new parameters are required, the asymptotic
force F, and the ratio of the slopes S,.

2.6. Required steps in a numerical simulation

The muscle tendon complex model is basically a function Fayre = Fyre (e, iMTC, q, ok, lCE) requiring
the integration of the internal degree of freedom lop (Eq. ) For a numerical implementation, the following
steps are required.

1. Define the initial conditions (index “i”): Iy i, [ MTC,i» ¢i, and lcg,;. We propose to begin simulations
with {yres = 0. Then, by giving lypsrc: and g¢;, the initial state of the MTC is defined. Finally, lck;
can then be derived by solving the equation 0 = ¢F;somFmar + Frep — Fsgp. This can be achieved in
symbolic or numeric form with the constraint 0 < lcg,; < lpyrc,i-

2. Calculate the required model formulae in the following order to get Fyre: Fisom, Frer, Fseg, Are,
B,ci, Do, Co, Cq, Cy, lcg. If this results in the concentric case lop > 0, calculate Arcj e, Brei,e, Do,e,
Ca.e, Cl,e, Co,e, and recalculate the eccentric iCE.

3. Calculate FSDE, and ﬁnally FMTC = FSEE(ZCE;ZMTC) + FSDE'UC’EJCEJZMTC,Q% which is the output
of the muscle tendon complex model.

4. Optional: calculate Fog for evaluation purposes.

Integrate log to get lcp along with the ...

o

6. multi-body simulation that calculates the generated motion from F;r¢c, which results in new l;7¢, [ MTC,
and g. Now, repeat from Step 2.

3. Eccentric force in rapid arm movements

In rapid elbow flexion movements, the extensor muscles operate in eccentric mode. By simulating rapid arm
movements, we demonstrate the difference caused by the model extension.

We modeled a single joint elbow driven by two model muscles representing the major flexor and extensor
muscles. Arm and muscle geometry, activation dynamics and muscle parameters are based on the work of
Kistemaker et al. [I4]. The arm dynamics are described by the differential equation

ISD = rﬂex(@)Fﬂex(ZﬂeX7 l.ﬂexy qﬂex) + Text (‘p)Fext (lext> l.extv Qext) (20)

where r are the lever arms [Eq. A12 in [I4] and F' the muscle tendon complex forces of the flexor and extensor
muscle groups (see . To generate a rapid arm movement from 45 deg to 135 deg, the flexor muscle activity
level was set to gqgex = 0.66, and the extensor activity level to gexy = 0.12. The resulting arm movement and
muscle forces are shown in Fig. [f] For comparison, the same movement was also simulated with the previous
muscle model [I§].

The difference between the two muscle models is that with the new model the desired angle pg4.s = 135 deg
was reached after about 0.29s, compared to 0.5s in the previous model. Maximum angular velocity was
Pmax = 868 deg/s with the new model, compared t0 ¢max = 572 deg/s with the previous model. With the new
muscle model, both the resulting movement and the reached maximal velocities are more realistic with respect
to human arm movements [I4]. The eccentric force-velocity relation, which caused unrealistically high CE forces
in rapid lengthening contractions in the previous model (comparison see Fig. ), is responsible for the observed
difference (Fig. |5]).
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Figure 5: Results of the arm movement simulation for the new model (solid blue line) compared to the previous model (dashed
red line Giinther et al. [6], Morl et al. [18]). a) The desired elbow angle ¢g4.s = 135deg (dashed gray) was reached faster with the
new muscle model. b) Resulting muscle forces were identical during concentric contraction (¢ < 0.05s) in the flexor muscle, but
deviated significantly during eccentric contractions, as expected from the difference shown in Fig. 3f.

4. Discussion

The extended Hill-type muscle model we presented consists of four elements: CE — a contractile element with
force-length relation and force-velocity relation for concentric and eccentric contractions, PEE — parallel elastic
element, SEE — series elastic element, and SDE — serial damping element. The main difference to previous
models is the consideration of both serial damping [6] 18] and the eccentric force-velocity relation [27]. With
this, the model is detailed enough to investigate neuro-muscular concepts (e.g. [I8, [14]). At the same time, it
is still reduced enough to be suitable for multi-body simulations of human and animal movement, where many
muscles have to be modeled (e.g. [27]).

Although suitable for many biomechanical simulations, the model has its limitations, i.e., it does not consider
all known effects relevant for muscle force generation. For example, it cannot reproduce the shift of optimum
muscle length to longer lengths which has been observed in experiments at submaximal muscle activation [22] [2]
19]. As most muscles operate in a range shorter than or around the optimal length [3], our model will typically
overestimate the muscle force at submaximal activation. This has to be considered if simulation of submaximal
contractions is intended. Furthermore, the current model cannot reproduce contraction history effects [I7, 211
16, 26], recruitment patterns of slow- and fast twitch fibers [28], or the muscles’ internal mass distribution and
dynamics [7]. Such effects and properties can be considered in future model extensions. We therefore provide
the muscle model as Matlab/Simulink code under the BSD-License (see electronic supplementary material) to
be used in further studies.
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