Algorithm 1: Calculation of segment points based on method A

Input: Sequence of positions P (cartesian zyz or joint angles), one for
each time point t € {1...n}
Input: Speed threshold «
Result: Sequence of flags F' telling whether the corresponding motion
point is a candidate for separating two adjacent segments
Initialize F' to be the same size as P;
foreach position p; in P, t > 2 do
PA =Pt — Pt-1;
squared_sum = 0;
foreach component c in pa do
‘ squared_sum += ¢
end
distance = v/squared_sum;
if distance > o then F[t] = true;
else F[t] = false;
end

Algorithm 2: Calculation of segment points based on method B

Input: Sequence of positions P (cartesian zyz or joint angles), one for
each time point ¢t € {1...n}
Input: Projection error threshold 8
Input: Reduced dimension m for PCA calculation
Result: Sequence of flags F' telling whether the corresponding motion
point is a candidate for separating two adjacent segments
Initialize F' to be the same size as P,
F[1] = F[2] = false;
Phistory = Q)v
foreach position p; in P do
add Pt to Phistory;
if | Phistory| > 2 then
compute PCA based on Phistory and reduced target dimension m;
Presiorea = PCA.backProject(PCA.project(Pristory));
PprojectionA = Pt — Prestored [t]a
squared_sum = 0;
foreach component c in pyrojectiona do
‘ squared_sum += c?;
end
projection_error = \/squared_sum;
if projection_error < 8 then F[t] = true;
else F[t] = false;
end
end

