
Algorithm 1: Calculation of segment points based on method A

Input: Sequence of positions P (cartesian xyz or joint angles), one for
each time point t ∈ {1 . . . n}

Input: Speed threshold α
Result: Sequence of flags F telling whether the corresponding motion

point is a candidate for separating two adjacent segments
Initialize F to be the same size as P ;
foreach position pt in P , t ≥ 2 do

p∆ = pt − pt−1;
squared sum = 0;
foreach component c in p∆ do

squared sum += c2;
end
distance =

√
squared sum;

if distance ≥ α then F [t] = true;
else F [t] = false;

end

Algorithm 2: Calculation of segment points based on method B

Input: Sequence of positions P (cartesian xyz or joint angles), one for
each time point t ∈ {1 . . . n}

Input: Projection error threshold β
Input: Reduced dimension m for PCA calculation
Result: Sequence of flags F telling whether the corresponding motion

point is a candidate for separating two adjacent segments
Initialize F to be the same size as P ;
F [1] = F [2] = false;
Phistory = ∅;
foreach position pt in P do

add pt to Phistory;
if |Phistory| ≥ 2 then

compute PCA based on Phistory and reduced target dimension m;
Prestored = PCA.backProject(PCA.project(Phistory));
pprojection∆ = pt − Prestored[t];
squared sum = 0;
foreach component c in pprojection∆ do

squared sum += c2;
end
projection error =

√
squared sum;

if projection error < β then F [t] = true;
else F [t] = false;

end

end

1

