Elastic Actuators for Efficient Robot Motion

Philipp Beckerle, Institute for Mechatronic Systems, TU Darmstadt, Germany

- Why elastic actuation?
- Possible actuator designs
- Variable torsion stiffness actuator
- Exemplary application: Knee prosthesis
- Project ideas

Why elastic actuation?

Motivation

Requirements in working environments

- Classical: Fast and precise motion
 - → High joint stiffness beneficial
- Trend: (Safe!) human-robot collaboration
 - → Low joint stiffness beneficial

www.logismarket.de

Requirements in assistive robotics:

- Energy efficiency
- Shock absorption
 - → Variable joint stiffness beneficial

www.cyberdyne.jp

www.tum.de

www.endolite.de

Why elastic actuation?

Powered lower limb prosthetics

State-of-the-art

- Powered knee and ankle devices
- Elastic actuation and mechanical transfer of energy between joints

Current potentials

Improvement of energy balance and flexibility

- Why elastic actuation?
- Possible actuator designs
- Variable torsion stiffness actuator
- Exemplary application: Knee prosthesis
- Project ideas

Possible actuator designs

Basic concept and configurations

- Link is driven via elastic element by motor 1
- Motor 2 is used to vary the stiffness charactersistics

Possible actuator designs

State-of-the-art Variable Stiffness Actuation

- Why elastic actuation?
- Possible actuator designs
- Variable torsion stiffness actuator
- Exemplary application: Knee prosthesis
- Project ideas

Series-elastic actuation concept

Variable torsion stiffness (VTS)

- Actuator 1 moves link via elasticity
- Actuator 2 varies stiffness $K_S(q_S) = \frac{\Gamma I_T}{q_S}$
- Pendulum load in prototype is according to a shank

Advanced modeling of transfer behavior

Link motion

$$I_{l}\ddot{q}_{l} + G_{l}(q_{l}) + K_{s}(q_{s})(q_{l} - q_{a}) = 0$$

$$I_{a}\ddot{q}_{a} + K_{s}(q_{s})(q_{l} - q_{a}) = \tau_{a}$$

Stiffness variation

$$m_S(q_S)\ddot{q}_S = F_S - c_f|\tau_e|sign(\dot{q}_S)$$

$$c_f = \left(\frac{\mu_{S,1}}{r_1} + \frac{\mu_{S,2}}{r_2}\right)$$

$$\tau_e = K_s(q_s)(q_l - q_a)$$

Question

- What impacts the mechanical transfer behavior of VTS?
- What are important transfer paths?
- Could you draw the frequency response?

$$I_{l}\ddot{q}_{l} + G_{l}(q_{l}) + K_{s}(q_{s})(q_{l} - q_{a}) = 0$$
$$I_{a}\ddot{q}_{a} - K_{s}(q_{s})(q_{l} - q_{a}) = \tau_{a}$$

Power consumption & natural dynamics

Mean mechanical power consumption:

$$P_{m,a,a} = \frac{1}{t_m} \int_{t_m} |\tau_a \dot{q}_a| dt$$

Additional areas of minimum power consumption due to natural dynamics

Stiffness control strategy

- Determination of frequency component with maximum power share
- Matching antiresonance or second natural mode by stiffness variation

$$K_{s,a}(\omega_d) = I_l \omega_d^2 - m_l g l_l$$
 $K_{s,n2}(\omega_d) = \frac{I_a I_l \omega_d^4 - I_a m_l g l_l \omega_d^2}{-(I_l + I_a) \omega_d^2 + m_l g l_l}$

Setting counter bearing position with PI-controller

Experimental investigations

Chirp, $K_s = 75 \text{ Nm rad}^{-1}$

- Power minimum for antiresonance
- Second natural mode does not show distinct minimum

Dual sine, K_s for antiresonance

- K_s adjusted at t = 5 s
- Power of actuator 1 reduced
- Power peak at actuator 2

- Why elastic actuation?
- Possible actuator designs
- Variable torsion stiffness actuator
- Exemplary application: Knee prosthesis
- Project ideas

Exemplary application: Knee prosthesis

HMCD-requirements & proshtetic knee concept

ACT: \hat{v}_k , $\hat{\tau}_k$, \hat{P}_k (1,3 m s⁻¹)

FUN: $\hat{v}_k, \hat{\tau}_k, \hat{P}_k$ (2,6 m s⁻¹)

Variation $K_s(q_s)$

MEC: Human kinematics

OPT: 10 km walking/running

WEI: 2,5 kg (comp. human)

SIZ: human dimensions

SEN: q_k, q_a, τ_a

- DC-Motor
- Serial, variable torsion stiffness
- Revolution joint
- Recuperation, LiPo
- 2 position encoders

Exemplary application: Knee prosthesis

Determination of gait-optimal stiffness values

Inverse dynamics with stiffness iteration

$$\tau_k + K_s(q_k - q_a) = 0$$
$$I_a \ddot{q}_a + K_s(q_a - q_k) = \tau_a$$

Requirements q_a, τ_a

Power minimization

 $\min_{K_S}(\max_{t_m}(P_{m,a}))$

 $P_{m,a} = \tau_a \dot{q}_a$

Exemplary application: Knee prosthesis

System integration & simulation w/ prosthesis

Integration actuation / controls

- Suitability of stiffness control
- \rightarrow Major frequencies close to first natural mode (constant w.r.t. K_s)

Deviating dynamics with prosthesis

- Considers inertial parameters of prosthesis in human simulation
- → Maximum power reduced (10%)

- Why elastic actuation?
- Possible actuator designs
- Variable torsion stiffness actuator
- Exemplary application: Knee prosthesis
- Project ideas

Project ideas

HMCD-requirements & proshtetic knee concept

- Variable stiffness control for human motions with prosthesis
 - Stiffness optimization for knee actuator during squats and hopping
 - > Relation of power consumption, biomech. optimum, and natural dynamics
 - Implementation as a stiffness control algorithm for a prosthesis

