Making an easy to build Bipedal Robot with LocoKit

Aida Mohammadi Nejad Maziar A. Sharbafi

Questions

- How to make a biped without boom?
- How can we solve ground clearance?
- How can we detect motion phases?

Goals

- Locomote
- Lateral stability
- Investigate embodiment & control
 - Reducing impact
 - Increasing robustness
 - Optimizing motion

Suggested approaches

- Lifting or continuously rotating swing leg
- A quadruped moving like a biped
- Using two motors: adjust leg length/angle
 > Cornell ranger model
- Using two motors: adjust leg stiffness

Building steps

- 1) Standard quadruped to start with
- 2) Simple Biped with 1 active DoF
- 3) Cornell Ranger like robot

What we learned ?

- Mechanics is important:
 - Building strong structure
 - add connections to strengthen the structure
 - Rotational and linear motion generation
- Communicate with the robot, with Jorgen
- Control of the motors

Simple Biped with 1 active DoF

- Challenges:
 - Lateral stability
 - Steady gait pattern
 - Ground clearance
 - Just one actuator
- Control targets:
 - Swinging the leg
 - Changing leg length

First performance

Next step

• Adding compliant feet

Performance

Cornell Ranger robot

- 2 motors swinging the outer leg
- 2 motors changing the leg length
- Synchronizing motions

Problems

- Long legs produce leg deflection
- Increasing the structure solidity with addition of more connections

