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Fig. 1 The setup of plantar
flexor muscle contraction (top
isometric, bottom concentric and
quick-release) experiments for a
piglet. The skeleton is carefully
fixed in prone position keeping
the origins of the stimulated
muscles unchanged. This
allowed to measure the net
output of the four main
contributing muscle–tendon
complexes (MTCs) depicted in
Fig. 2

Fig. 2 Anatomical muscle structure of a piglet. Depicted muscles
are M. gastrocnemius medialis (GM), M. gastrocnemius lateralis (GL),
M. soleus (SOL) and M. flexor digitorum superficialis (FDS). The net
output of these four MTCs is measured (Fig. 1). Their anatomical param-
eters are listed in Table 1. The parameters of the lumped model MTC
(Fig. 3) reflecting the experimental situation are given in Table 2

stamp. To avoid different initial length of the muscle because
of varying loads, the initial length was fixed at resting muscle
length with a 100 g load. For this a clamp was adjusted on the
steel wire against a fixed bar. For analysis of quick-release
contractions according to Hill (1938) the load stamp could
be fixed using an electromagnet. In this mode of analysis the
load stamp was held in fixed position until 1.0 s after elec-
trically stimulating the muscle. Thus, it was ensured that the
isometric force of the plantar flexors had risen to the max-
imum value. Thereafter, the load stamp was released. Data
recording (encoder) and processing was analogous to con-
centric contractions described above.

For calf muscle stimulation the sciatic nerve of the left
hind limb was used. For this purpose a skin incision was
made in the lateral upper leg. The sciatic nerve was carefully
prepared and attached to a platinum electrode pair immersed
by Ringer solution in order to avoid desiccating the nerve.
Bipolar stimulation of the sciatic nerve was used for supra-
maximal muscle contraction (voltage-constant rectangular
pulses, 150 Hz repetition frequency, 100µs impulse width;
Physiostimulator, Hugo Sachs Elektronik, Germany). During
the experiments stimulation nerve and electrodes were super-
fused with warmed physiological saline (37◦C). In order to
avoid an influence of force output measured on the calca-
neus by ankle torque due to a simultaneous contraction of
the muscle antagonists the distal tendons of tibialis anterior
and extensor digitorum longus were sectioned. After the sur-
gical preparation had been completed general anesthesia was
changed by exchange of isoflurane inhalation against intra-
venous thiobarbital infusion (12.5 mg/(kg[body weight]h)).
Furthermore, an epidural blockade was done after lumbar
puncture below the fourth lumbar vertebra by instillation of
0.5–1.0 ml of the local anesthetic bupivacaine hydrochloride
(Fa. Curasan, Germany). Exact setting of the transmission
blockade was verified by an immediate tonus loss of the hind
limb muscles. Then, the piglet was allowed to rest for approx-
imately 30 min until the beginning of the measurement series
of different muscle contractions.

2.1.2 Experimental protocol

First, a series of isometric force measurements at different
muscle length with 2 s stimulation and 2 min resting period
(adjusting the next muscle length) was carried out. Based on
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Table 1 Mean anatomical muscle parameters (compare Fig. 2) from
five (n = 5) normal weight 1 day old piglets (mean body weight
≈ 1,500 g; see (Wank et al. 2000) for estimated muscle mass, pen-
nation angle, and fibre type I; see (Wank 2000) for length of muscle

belly, aponeurosis length, fibre geometry, pennation angle, fibre length,
and tendon length; see (Wank et al. 2006) for estimated muscle mass
and fibre type II)

GL GM SOL FDS

Estimated muscle mass (g) 2.0 2.5 1.0 1.0

Length of muscle belly (m) 0.044 ± 0.004 0.04 ± 0.004 0.044 ± 0.004 0.045 ± 0.005

Aponeurosis length (m) 0.033 ± 0.003 0.028 ± 0.003 0.006 ± 0.001 0.039 ± 0.004

Fibre geometry Unipennate Unipennate Fusiform Bipennate

Pennation angle (◦) 18 ± 4 15 ± 4 4 ± 1 13 ± 3

Fibre length (m) 0.012 ± 0.003 0.013 ± 0.003 0.039 ± 0.004 0.008 ± 0.002

Tendon length (m) 0.015 ± 0.002 0.018 ± 0.003 0.014 ± 0.003 0.056 ± 0.006

Fibre type I (slow twitch) (%) 8.2 ± 5.9 8.5 ± 4.6 5.3 ± 3.2 25.0 ± 5.4

Fibre type II (fast twitch) (%) 91.8 ± 5.9 91.5 ± 4.6 94.7 ± 3.2 75.0 ± 5.4

these data the mean anatomical length of the muscle–tendon
complex (MTC) l0 of the plantar flexors was estimated. l0 is
of significance for the validation of the muscle model (see
beginning of Sects. 3.1, 3.1.4 and 4.1). Thereafter, a series
of (initially unloaded) concentric contractions was analysed.
At first, the initial muscle length was adjusted correspond-
ing to muscle strain at 100 g load. Contractions with loads of
100, 200, 300, 400, 600, 800, 1,000, 1,400 and 1,800 g were
recorded twice for each load (1 s stimulation duration, 2 min
resting period). In the same way quick-release contractions
were investigated—as well twice for each load and 2 min rest
after each trial. In contrast to concentric mode the stimula-
tion duration at quick-release mode was 1.5 s (1 s isometric
pre-contraction and 0.5 s after release). For checking fatigue
effects at the end of each series an isometric contraction at the
mean anatomical muscle length l0 was recorded again after
concentric and quick-release series. The maximum isometric
force of the reference trials were generally above 95% of the
initial value from the first series.

2.2 Simulation

For the simulation study we mapped the experimental setup
(Sect. 2.1) to a mechanical model, including one lumped
muscle–tendon complex (MTC) fixed to the inertial system
pulling on the centre of mass of a rigid body (Fig. 3). The
loading masses ranged from 100 to 1,800 g. The whole model
was implemented in a simulation package simsys developed
in our department (Krieg 1992; Günther and Ruder 2003)
based on the Shampine and Gordon (1975) integration algo-
rithm and a linear equation solver from Numerical Recipes
(Press et al. 1994). We simulated the three experimental
situations with the identical code by switching one input

Fig. 3 The structure of the lumped model MTC (actual length: lm).
lm is the sum of the length of the contractile element (CE) lCE plus
the length of the serial element (SE; serial elastic element: SEE) lSE.
The length of the parallel element (PE; parallel elastic element: PEE)
equals lCE. The standard Hill-type muscle model is drawn with solid
black lines. Optionally added damping components (DPE and DSE) are
greyed out. The experimental procedure for the three different con-
traction modes differs in switching the trigger T (isometric: T locked;
concentric: T released; quick-release: T release after full activation).
The MTC-length lm was varied during isometric contractions, the load-
ing mass during concentric and quick-release contractions. g means the
gravitational acceleration vector
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Fig. 1 The setup of plantar
flexor muscle contraction (top
isometric, bottom concentric and
quick-release) experiments for a
piglet. The skeleton is carefully
fixed in prone position keeping
the origins of the stimulated
muscles unchanged. This
allowed to measure the net
output of the four main
contributing muscle–tendon
complexes (MTCs) depicted in
Fig. 2

Fig. 2 Anatomical muscle structure of a piglet. Depicted muscles
are M. gastrocnemius medialis (GM), M. gastrocnemius lateralis (GL),
M. soleus (SOL) and M. flexor digitorum superficialis (FDS). The net
output of these four MTCs is measured (Fig. 1). Their anatomical param-
eters are listed in Table 1. The parameters of the lumped model MTC
(Fig. 3) reflecting the experimental situation are given in Table 2

stamp. To avoid different initial length of the muscle because
of varying loads, the initial length was fixed at resting muscle
length with a 100 g load. For this a clamp was adjusted on the
steel wire against a fixed bar. For analysis of quick-release
contractions according to Hill (1938) the load stamp could
be fixed using an electromagnet. In this mode of analysis the
load stamp was held in fixed position until 1.0 s after elec-
trically stimulating the muscle. Thus, it was ensured that the
isometric force of the plantar flexors had risen to the max-
imum value. Thereafter, the load stamp was released. Data
recording (encoder) and processing was analogous to con-
centric contractions described above.

For calf muscle stimulation the sciatic nerve of the left
hind limb was used. For this purpose a skin incision was
made in the lateral upper leg. The sciatic nerve was carefully
prepared and attached to a platinum electrode pair immersed
by Ringer solution in order to avoid desiccating the nerve.
Bipolar stimulation of the sciatic nerve was used for supra-
maximal muscle contraction (voltage-constant rectangular
pulses, 150 Hz repetition frequency, 100µs impulse width;
Physiostimulator, Hugo Sachs Elektronik, Germany). During
the experiments stimulation nerve and electrodes were super-
fused with warmed physiological saline (37◦C). In order to
avoid an influence of force output measured on the calca-
neus by ankle torque due to a simultaneous contraction of
the muscle antagonists the distal tendons of tibialis anterior
and extensor digitorum longus were sectioned. After the sur-
gical preparation had been completed general anesthesia was
changed by exchange of isoflurane inhalation against intra-
venous thiobarbital infusion (12.5 mg/(kg[body weight]h)).
Furthermore, an epidural blockade was done after lumbar
puncture below the fourth lumbar vertebra by instillation of
0.5–1.0 ml of the local anesthetic bupivacaine hydrochloride
(Fa. Curasan, Germany). Exact setting of the transmission
blockade was verified by an immediate tonus loss of the hind
limb muscles. Then, the piglet was allowed to rest for approx-
imately 30 min until the beginning of the measurement series
of different muscle contractions.

2.1.2 Experimental protocol

First, a series of isometric force measurements at different
muscle length with 2 s stimulation and 2 min resting period
(adjusting the next muscle length) was carried out. Based on
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Table 1 Mean anatomical muscle parameters (compare Fig. 2) from
five (n = 5) normal weight 1 day old piglets (mean body weight
≈ 1,500 g; see (Wank et al. 2000) for estimated muscle mass, pen-
nation angle, and fibre type I; see (Wank 2000) for length of muscle

belly, aponeurosis length, fibre geometry, pennation angle, fibre length,
and tendon length; see (Wank et al. 2006) for estimated muscle mass
and fibre type II)

GL GM SOL FDS

Estimated muscle mass (g) 2.0 2.5 1.0 1.0

Length of muscle belly (m) 0.044 ± 0.004 0.04 ± 0.004 0.044 ± 0.004 0.045 ± 0.005

Aponeurosis length (m) 0.033 ± 0.003 0.028 ± 0.003 0.006 ± 0.001 0.039 ± 0.004

Fibre geometry Unipennate Unipennate Fusiform Bipennate

Pennation angle (◦) 18 ± 4 15 ± 4 4 ± 1 13 ± 3

Fibre length (m) 0.012 ± 0.003 0.013 ± 0.003 0.039 ± 0.004 0.008 ± 0.002

Tendon length (m) 0.015 ± 0.002 0.018 ± 0.003 0.014 ± 0.003 0.056 ± 0.006

Fibre type I (slow twitch) (%) 8.2 ± 5.9 8.5 ± 4.6 5.3 ± 3.2 25.0 ± 5.4

Fibre type II (fast twitch) (%) 91.8 ± 5.9 91.5 ± 4.6 94.7 ± 3.2 75.0 ± 5.4

these data the mean anatomical length of the muscle–tendon
complex (MTC) l0 of the plantar flexors was estimated. l0 is
of significance for the validation of the muscle model (see
beginning of Sects. 3.1, 3.1.4 and 4.1). Thereafter, a series
of (initially unloaded) concentric contractions was analysed.
At first, the initial muscle length was adjusted correspond-
ing to muscle strain at 100 g load. Contractions with loads of
100, 200, 300, 400, 600, 800, 1,000, 1,400 and 1,800 g were
recorded twice for each load (1 s stimulation duration, 2 min
resting period). In the same way quick-release contractions
were investigated—as well twice for each load and 2 min rest
after each trial. In contrast to concentric mode the stimula-
tion duration at quick-release mode was 1.5 s (1 s isometric
pre-contraction and 0.5 s after release). For checking fatigue
effects at the end of each series an isometric contraction at the
mean anatomical muscle length l0 was recorded again after
concentric and quick-release series. The maximum isometric
force of the reference trials were generally above 95% of the
initial value from the first series.

2.2 Simulation

For the simulation study we mapped the experimental setup
(Sect. 2.1) to a mechanical model, including one lumped
muscle–tendon complex (MTC) fixed to the inertial system
pulling on the centre of mass of a rigid body (Fig. 3). The
loading masses ranged from 100 to 1,800 g. The whole model
was implemented in a simulation package simsys developed
in our department (Krieg 1992; Günther and Ruder 2003)
based on the Shampine and Gordon (1975) integration algo-
rithm and a linear equation solver from Numerical Recipes
(Press et al. 1994). We simulated the three experimental
situations with the identical code by switching one input

Fig. 3 The structure of the lumped model MTC (actual length: lm).
lm is the sum of the length of the contractile element (CE) lCE plus
the length of the serial element (SE; serial elastic element: SEE) lSE.
The length of the parallel element (PE; parallel elastic element: PEE)
equals lCE. The standard Hill-type muscle model is drawn with solid
black lines. Optionally added damping components (DPE and DSE) are
greyed out. The experimental procedure for the three different con-
traction modes differs in switching the trigger T (isometric: T locked;
concentric: T released; quick-release: T release after full activation).
The MTC-length lm was varied during isometric contractions, the load-
ing mass during concentric and quick-release contractions. g means the
gravitational acceleration vector
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Fig. 1 The setup of plantar
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quick-release) experiments for a
piglet. The skeleton is carefully
fixed in prone position keeping
the origins of the stimulated
muscles unchanged. This
allowed to measure the net
output of the four main
contributing muscle–tendon
complexes (MTCs) depicted in
Fig. 2

Fig. 2 Anatomical muscle structure of a piglet. Depicted muscles
are M. gastrocnemius medialis (GM), M. gastrocnemius lateralis (GL),
M. soleus (SOL) and M. flexor digitorum superficialis (FDS). The net
output of these four MTCs is measured (Fig. 1). Their anatomical param-
eters are listed in Table 1. The parameters of the lumped model MTC
(Fig. 3) reflecting the experimental situation are given in Table 2

stamp. To avoid different initial length of the muscle because
of varying loads, the initial length was fixed at resting muscle
length with a 100 g load. For this a clamp was adjusted on the
steel wire against a fixed bar. For analysis of quick-release
contractions according to Hill (1938) the load stamp could
be fixed using an electromagnet. In this mode of analysis the
load stamp was held in fixed position until 1.0 s after elec-
trically stimulating the muscle. Thus, it was ensured that the
isometric force of the plantar flexors had risen to the max-
imum value. Thereafter, the load stamp was released. Data
recording (encoder) and processing was analogous to con-
centric contractions described above.

For calf muscle stimulation the sciatic nerve of the left
hind limb was used. For this purpose a skin incision was
made in the lateral upper leg. The sciatic nerve was carefully
prepared and attached to a platinum electrode pair immersed
by Ringer solution in order to avoid desiccating the nerve.
Bipolar stimulation of the sciatic nerve was used for supra-
maximal muscle contraction (voltage-constant rectangular
pulses, 150 Hz repetition frequency, 100µs impulse width;
Physiostimulator, Hugo Sachs Elektronik, Germany). During
the experiments stimulation nerve and electrodes were super-
fused with warmed physiological saline (37◦C). In order to
avoid an influence of force output measured on the calca-
neus by ankle torque due to a simultaneous contraction of
the muscle antagonists the distal tendons of tibialis anterior
and extensor digitorum longus were sectioned. After the sur-
gical preparation had been completed general anesthesia was
changed by exchange of isoflurane inhalation against intra-
venous thiobarbital infusion (12.5 mg/(kg[body weight]h)).
Furthermore, an epidural blockade was done after lumbar
puncture below the fourth lumbar vertebra by instillation of
0.5–1.0 ml of the local anesthetic bupivacaine hydrochloride
(Fa. Curasan, Germany). Exact setting of the transmission
blockade was verified by an immediate tonus loss of the hind
limb muscles. Then, the piglet was allowed to rest for approx-
imately 30 min until the beginning of the measurement series
of different muscle contractions.

2.1.2 Experimental protocol

First, a series of isometric force measurements at different
muscle length with 2 s stimulation and 2 min resting period
(adjusting the next muscle length) was carried out. Based on
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Fig. 5 Quick-release contraction mode. The MTC contracts along
the load-dependent force–velocity relation starting (release) at zero
velocity. Depicted are the following: (i) the measured force–velocity
relations of the MTC (crossed lines) for different loads (in g; addition-
ally, the time passed since release in ms), (ii) the associated simulation
results (thin solid lines), (iii) the concentric force–velocity relation of
the model CE for q = 1 and lCE = 2

3 lCE,opt (thick solid line), (iv) two
arrows representing the portions of contraction velocity of the CE (vCE)
and the SE (vSE) in one exemplary contraction situation (1,000 g load
≈ 20 ms after release where the MTC produces ≈ 7 N output at a con-
traction velocity of ≈ 0.12 m/s), and the results of the following two
parameter fits. Hill parameters fitted to the points of maximum mea-
sured contraction velocities (upper dotted line through big crosses) are
Fmax = 30.0 N, Arel = 0.125, Brel = 5.75 1

s (i.e., vmax = 0.690 m/s).
For comparison the maximum velocities of the MTC during concen-
tric contractions (see Fig. 6) are plotted (lower dotted line through big
crosses) and the respective fitted Hill parameters are Fmax = 32.9 N,
Arel = 0.131, Brel = 1.25 1

s (i.e., vmax = 0.143 m/s). Note that all sim-
ulations (release at lm,0 ≈ l0 with a fully activated CE at lCE ≈ 2

3 lCE,opt:
compare Fig. 8) start from ≈ 25 N force level according to the mea-
sured 1,000 g relation (almost perfect concurrence of simulation and
experiment). For a possible explanation of non-systematic phenomena
in the initial experimental curves see Sect. 3.1.1

Additionally, in Fig. 5 the experimental curves are plotted
somehow beyond the maximum velocity, the respective time
passed since release is indicated, and the simulation results
are drawn accordingly. The percentage of the SE-contrac-
tion in the MTC contraction velocity can be directly seen
in Fig. 5. Choosing a force level (both arrows: ≈ 7 N), we
find that the respective current SE-velocity (vSE) is given by
the difference between the depicted MTC-velocity and the
CE-velocity (vCE) plotted for the initial state of the quick-
release contraction (thick solid line, q = 1, lCE ≈ 2

3 lCE,opt).
The determined stiffness is little sensitive to the variability
of the Hill parameters known from literature. In contrast,
the concentric contraction is far more sensitive to Arel,0 and
Brel,0 than to SEE-stiffness. These parameters are, therefore,
obtained from fitting concentric contraction simulations to
experimental data as presented in the next paragraph. Few
iteration steps are necessary to fit both quick-release and
concentric contractions to identify a consistent set of Arel,0,
Brel,0 and KSEE,l(FSEE ≈ Fmax). Our model contains no

representation of potential history effects within the passive
structures (PE, SE) at t = tstart in the experimental setup,
which may have been absent for the muscle preparation of
the 1,000 g contraction. Therefore, we chose the initial mus-
cle length lm = 0.0603 m to be in accordance with the 1,000 g
preparation assuming there the least influence of such a prep-
aration effect and consequently showing best concurrence of
simulation and experiment.

3.1.2 Concentric contraction

Figure 6 depicts the velocity–time relation of concentric con-
tractions with different loading masses for exactly the same
MTC as analysed in the quick-release contraction mode in the
preceding Sect. 3.1.1. As criteria for parameter adjustment,
we used the amplitude and the timing of the maxima and the
frequency of the superimposed oscillation. Initial conditions
were lm ≈ 0.97 lm,0 = 0.0597 m and lCE ≈ 0.93 lCE,opt =
0.0140 m. The load starts to move when the muscle force
exceeds gravity which happens in the simulation at an acti-
vation level of q ≈ 0.5 for 100 g and q ≈ 0.99 for 1,800 g.
We observe maximum MTC-velocity amplitudes e.g., for
the lowest analysed load (100 g) of 0.11 m/s which is about
25% lower than the maximum CE velocity vmax,0 (Table 2).
Within the displayed time interval of 160 ms internally the
CE shortens to lCE ≈ 1/3 lCE,opt (100 g: ∆lCE = 0.0087 m)
and lCE ≈ 2/3 lCE,opt (1,800 g: ∆lCE = 0.0041 m). In con-
trast, externally the MTC shortens ten times more for 100 g
(∆lm = 0.0082 m) than for 1,800 g (∆lm = 0.0008 m). The
CE contraction kinematics must closely map the real muscle
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s (i.e., vmax = 0.690 m/s).
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tric contractions (see Fig. 6) are plotted (lower dotted line through big
crosses) and the respective fitted Hill parameters are Fmax = 32.9 N,
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compare Fig. 8) start from ≈ 25 N force level according to the mea-
sured 1,000 g relation (almost perfect concurrence of simulation and
experiment). For a possible explanation of non-systematic phenomena
in the initial experimental curves see Sect. 3.1.1

Additionally, in Fig. 5 the experimental curves are plotted
somehow beyond the maximum velocity, the respective time
passed since release is indicated, and the simulation results
are drawn accordingly. The percentage of the SE-contrac-
tion in the MTC contraction velocity can be directly seen
in Fig. 5. Choosing a force level (both arrows: ≈ 7 N), we
find that the respective current SE-velocity (vSE) is given by
the difference between the depicted MTC-velocity and the
CE-velocity (vCE) plotted for the initial state of the quick-
release contraction (thick solid line, q = 1, lCE ≈ 2

3 lCE,opt).
The determined stiffness is little sensitive to the variability
of the Hill parameters known from literature. In contrast,
the concentric contraction is far more sensitive to Arel,0 and
Brel,0 than to SEE-stiffness. These parameters are, therefore,
obtained from fitting concentric contraction simulations to
experimental data as presented in the next paragraph. Few
iteration steps are necessary to fit both quick-release and
concentric contractions to identify a consistent set of Arel,0,
Brel,0 and KSEE,l(FSEE ≈ Fmax). Our model contains no

representation of potential history effects within the passive
structures (PE, SE) at t = tstart in the experimental setup,
which may have been absent for the muscle preparation of
the 1,000 g contraction. Therefore, we chose the initial mus-
cle length lm = 0.0603 m to be in accordance with the 1,000 g
preparation assuming there the least influence of such a prep-
aration effect and consequently showing best concurrence of
simulation and experiment.

3.1.2 Concentric contraction

Figure 6 depicts the velocity–time relation of concentric con-
tractions with different loading masses for exactly the same
MTC as analysed in the quick-release contraction mode in the
preceding Sect. 3.1.1. As criteria for parameter adjustment,
we used the amplitude and the timing of the maxima and the
frequency of the superimposed oscillation. Initial conditions
were lm ≈ 0.97 lm,0 = 0.0597 m and lCE ≈ 0.93 lCE,opt =
0.0140 m. The load starts to move when the muscle force
exceeds gravity which happens in the simulation at an acti-
vation level of q ≈ 0.5 for 100 g and q ≈ 0.99 for 1,800 g.
We observe maximum MTC-velocity amplitudes e.g., for
the lowest analysed load (100 g) of 0.11 m/s which is about
25% lower than the maximum CE velocity vmax,0 (Table 2).
Within the displayed time interval of 160 ms internally the
CE shortens to lCE ≈ 1/3 lCE,opt (100 g: ∆lCE = 0.0087 m)
and lCE ≈ 2/3 lCE,opt (1,800 g: ∆lCE = 0.0041 m). In con-
trast, externally the MTC shortens ten times more for 100 g
(∆lm = 0.0082 m) than for 1,800 g (∆lm = 0.0008 m). The
CE contraction kinematics must closely map the real muscle
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Fig. 6 Concentric contraction mode. The contraction velocity of the
MTC in the experiment (crossed lines) and associated simulation (solid
lines) is plotted versus time for various loads (in g). All curves are
shifted to the time where the load leaves its support (0.0 s), i.e., when
muscle force exceeds gravity. In that instant, despite being fully stim-
ulated (ST I M = 1, according to the experimental situation) the CE
is not fully activated for 100 g (q ≈ 0.54), however, it is for 1,800 g
(q > 0.999)
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fibre kinematics given a realistic SEE-stiffness in the model
and knowing that both model MTC kinematics matches the
real MTC kinematics and model MTC-length equals real
MTC-length.

Figure 6 also demonstrates that superimposed damped
oscillations depending on the load occur in both the exper-
iment and the simulation. They become more accentuated
if SE-damping is neglected (compare Sect. 3.2.3 below).
The associated frequencies range from 19.0 Hz (100 g) to
10.9 Hz (1,800 g) and are well predicted by the simulation.
The mean force level during contraction corresponds to the
external load and determines via the non-linearity of the SEE-
characteristic the respective force-dependent stiffness of the
MTC. Both our analysis of isometric contractions (see next
Sect. 3.1.3) and literature account for such a non-linearity.
Here, the SEE-stiffnesses range from 1.5 kN/m (100 g) to
9 kN/m (1,800 g). The measured and predicted frequencies
of the observed oscillations comply very well with the eigen-
frequencies of a linear spring-mass system composed of the
loading mass and an SEE-spring linearised around the opera-
tion point of the typical load (100 g:19.5 Hz, 1,800 g:11.2 Hz).
We conclude that the observed eigenoscillation is that of a
loading mass versus the connection point between SEE and
CE serving as a virtual suspension point of the spring(SEE)-
mass(load) system.

In general, the experimental plots show load-dependent
latencies for reaching the maximum contraction velocity
which are significantly lower in our model. Additionally, a
non-systematic variability of these latencies is manifest in the
experimental data. Both these findings and too low velocities
in the model at greater shortening of the CE (t > 100 ms)
are in accordance with the indications from the quick-release
contraction mode (potential history effects) suggestive of the
lack of an internal dissipative degree of freedom within the
muscle model. History characteristics of a real muscle might
explain a dependency of the measured data on the preparation
process.

3.1.3 Isometric contraction

Having found a basic estimate of the stiffness of the SEE
the isometric contraction mode constitutes the basis for find-
ing the parameters of the PEE and substantiates the non-lin-
ear characteristic of the SEE. The (passive) muscle forces
in the de-activated muscle for different MTC-lengths are
transparent in Fig. 7 before stimulation at t = 1.0 s. This
MTC force–length relation is determined by the SEE and
PEE composed in series and shows an exponent of non-line-
arity of ≈ 2.3 . . . 2.7. To reduce complexity and in assump-
tion of comparable material properties, we chose a non-linear
exponent of νSEE,PEE = 2.5 for both elastic elements. Fur-
thermore, the quick-release experiments govern the linear
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Fig. 7 Isometric contraction mode. Force output of the MTC is plotted
versus time for various fixed MTC-lengths (ratios lm/ l0 = lm/ lm,0 are
given): experimental curves as dash-dotted and simulation as solid lines.
Full stimulation of the previously passive muscle starts at 0.1 s (simu-
lation: ST I M = 1), it ends at about 1.1 s

stiffness of the SEE around the operating point of maximum
isometric force. From this, the choice of the non-linear coeffi-
cient of the SEE characteristic is restricted. Keeping strictly
to the experimental elongation steps, it is possible to find a
ratio between the characteristic coefficients of SEE and PEE
in the model by reproducing the passive MTC force–length
relation. A fine-tuning of this relationship could be achieved
by a slight variation of the SEE–PEE coefficient ratio and
the rest length of the PEE (parameter: LPEE,0). Additional
information for the LPEE,0 choice first came from the fact
that the MTC already shows a low but significant passive
resistive force at 0.97l0 (0.3 N, not resolved in Fig. 7). Sec-
ond, there are indications from literature (Granzier and Labeit
2006) that there are elastic structures located within the sar-
comere taking over passive forces already slightly below the
force–length plateau region. The best choice of the ratio
of the non-linear coefficients of the SEE–PEE compound
was KPEE,nl ≈ 4KSEE,nl with LPEE,0 = 0.90. Consistently,
the mentioned pre-attunement of the SEE-stiffness KSEE,nl
results in simulated concentric contraction dynamics close
to the experimental findings (Sect. 3.1.2 above), presuming
realistic starting values of the Hill constants from literature.
Having specified the elastic parameters of SEE and PEE, the
maximum force levels of the fully stimulated muscle at varied
fixed lengths determine the four parameters ∆Wlimb, νCE,limb
of both the ascending and descending limb of the isometric
force–length relation of our contractile element (CE).

3.1.4 Muscle length and length dependency
of the isometric force

Based on the fact that model MTC-length is equal to real
MTC-length (within few millimeters) we extract the preset
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