Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
abschlussarbeiten:msc:dorschsarah [03.09.2018 14:11]
Sarah Dorsch [Hüpfverhalten des zweibeinigen Modells im ungestörten Fall]
abschlussarbeiten:msc:dorschsarah [01.07.2019 00:05] (aktuell)
Sarah Dorsch [Literatur]
Zeile 3: Zeile 3:
  
 | Title          ^ Sensorimotor processing of a neuromechanical hopping model                             ^ | Title          ^ Sensorimotor processing of a neuromechanical hopping model                             ^
-| Titel          ^ Sensomotorische Verarbeitung in einem Neuromechansichen ​Hüpfmodell ​                    ^+| Titel          ^ Sensomotorische Verarbeitung in einem Neuromechanischen ​Hüpfmodell ​                    ^
 | Supervisor ​    ^ M.Sc. Christian Schumacher, Dr.-Ing. Philipp Beckerle, Prof. Dr. phil. André Seyfarth ​ ^ | Supervisor ​    ^ M.Sc. Christian Schumacher, Dr.-Ing. Philipp Beckerle, Prof. Dr. phil. André Seyfarth ​ ^
 | Autor          ^ Sarah Dorsch ​                                                                          ^ | Autor          ^ Sarah Dorsch ​                                                                          ^
 | Department ​    ^ FB 16 Mechanical Engineering ​                                                          ^ | Department ​    ^ FB 16 Mechanical Engineering ​                                                          ^
-| Last revision ​ ^ 28.08.2018                                                                             ^ +| Last revision ​ ^ 30.06.2019                                                                             ^ 
-| Status ​        ​^ ​in progress ​                                                                           ​^+| Status ​        ​^ ​finished ​                                                                              ^
 |                ^                                                                                        ^ |                ^                                                                                        ^
  
-<note important>​ 
-Achtung: Benutzt diese Vorlage für eure Wiki-Einträge!! !! 
-</​note>​ 
- 
-<note tip> 
-Hier findet ihr **Hilfestellungen beim Formatieren** des Wikis: [[:​benutzung|HowTo - Wiki-Format]] \\ 
-Hier gibt es **Hilfe zum Erstellen eines Tutorials/​Podcasts** [[:​howto|HowTo - Tutorial]] ​ 
-</​note>​ 
  
 \\ \\
 ===== Einleitung ===== ===== Einleitung =====
-Viele Bewegungen im täglichen Umfeld sind für den Menschen selbstverständlich und geschehen häufig automatisiert. Gehen wir auf unebenem Gelände oder über Kopfsteinpflaster,​ ist es trotz der sich ändernden Umgebung nicht notwendig, dass wir uns gedanklich auf die Ausführung konzentrieren. Ebenso unter anderen Bedingungen,​ wie beim Tragen eines Korbes, was eine einseitige zusätzliche Masse bedeutet, können wir uns häufig ohne Schwierigkeiten fortbewegen. Intuitiv scheinen wir unter den veränderten Bedingung unseren Gang zu stabilisieren und anzupassen. Dies kann bewältigt werden, obwohl die Beine eines Menschen nicht exakt gleich sind. Beispielsweise haben viele Menschen unterschiedlich lange Beine (Gurney, 2002). Auch, dass Fußballspieler ein bevorzugtes Bein zum Abschuss haben und damit höhere Ballgeschwindigkeiten erzeugen können, deutet auf Asymmetrien im Körper hin  +Viele Bewegungen im täglichen Umfeld sind für den Menschen selbstverständlich und geschehen häufig automatisiert. Gehen wir auf unebenem Gelände oder über Kopfsteinpflaster,​ ist es trotz der sich ändernden Umgebung nicht notwendig, dass wir uns gedanklich auf die Ausführung konzentrieren. Ebenso unter anderen Bedingungen,​ wie beim Tragen eines Korbes, was eine einseitige zusätzliche Masse bedeutet, können wir uns häufig ohne Schwierigkeiten fortbewegen. Intuitiv scheinen wir unter den veränderten Bedingung unseren Gang zu stabilisieren und anzupassen. Dies kann bewältigt werden, obwohl die Beine eines Menschen nicht exakt gleich sind. Beispielsweise haben viele Menschen unterschiedlich lange Beine (Gurney, 2002).\\ ​
- ​(Dörge et al., 2002).\\ ​+
  
 Zur Entwicklung von Prothesen, Orthesen, Exoskeletten und Robotern stellt sich die Frage, wie der Mensch sich an seine Umgebung anpasst, um diese Regelstrategien nachbilden und auf ein technisches System übertragen zu können. Um sich diesem Thema anzunähern,​ wird hier das Hüpfen auf der Stelle untersucht, welches der vertikalen Schwingung der Lokomotion entspricht (Häufle et al., 2010). \\  Zur Entwicklung von Prothesen, Orthesen, Exoskeletten und Robotern stellt sich die Frage, wie der Mensch sich an seine Umgebung anpasst, um diese Regelstrategien nachbilden und auf ein technisches System übertragen zu können. Um sich diesem Thema anzunähern,​ wird hier das Hüpfen auf der Stelle untersucht, welches der vertikalen Schwingung der Lokomotion entspricht (Häufle et al., 2010). \\ 
  
-Es fragt sich, welchen Einfluss beispielsweise die im Alter verringerte Muskelkraft auf unsere Bewegung hat (Hortobágyi und Devita, 2000). Oder wie wir unsere Bewegung auf anderen ​unebenen Untergründen anpassen, z. B. auf Kopfsteinpflaster. Auch das Laufen auf weichem Untergrund wie Gras, also ein nachgiebiger Boden, stellt eine alltägliche Bewegung unter Störung dar.\\ ​+Es fragt sich, welchen Einfluss beispielsweise die im Alter verringerte Muskelkraft auf unsere Bewegung hat (Hortobágyi und Devita, 2000). Oder wie wir unsere Bewegung auf unebenen Untergründen anpassen, z. B. auf Kopfsteinpflaster. Auch das Laufen auf weichem Untergrund wie Gras, also ein nachgiebiger Boden, stellt eine alltägliche Bewegung unter Störung dar.\\ ​
  
-Ziel ist es, die Robustheit eines reflex-nutzenden neuromechanischen Hüpfmodells nach Geyer (Geyer et al., 2003) mittels simulativ aufgeprägter Störungen zu analysieren. Dabei werden sowohl sensorische als auch mechanische Störungen betrachtet. Das Störverhalten wird anschließend anhand von Kriterien ​ quantifiziert,​ die die Stabilität,​ die Performance und die Effizienz des Hüpfmusters beschreiben. In der Literatur wird angedeutet, dass der Bereich des stabilen Gehens und Rennens durch simulierte Asymmetrien zwischen den Beinen nicht zwangsläufig verringert wird und sogar für spezielle Asymmetrien des Beinwinkels beim Auftreten erweitert werden kann (Merker et al., 2015; Merker et al., 2011). Hierdurch und durch die Gegebenheiten in der Realität motiviert, wird das Hüpfverhalten unter asymmetrischen Bedingungen betrachtet. Dazu wird das Hüpfmodell um ein zweites Bein erweitert. Anschließend wird anhand von Bodenhöhenvariationen untersucht, in welchem Maße Störungen ausgeglichen werden können und ob sich dies in Abhängigkeit der Feedbackkonfiguration verändert. Des Weiteren wird an diesem Beispiel das Modell validiert, indem ein Vergleich der vorausgesagten Beinsteifigkeit mit experimentellen Ergebnissen angestellt wird. +Ziel ist es, die Robustheit eines reflex-nutzenden neuromechanischen Hüpfmodells nach Geyer (Geyer et al., 2003) mittels simulativ aufgeprägter Störungen zu analysieren. Dabei werden sowohl sensorische als auch mechanische Störungen betrachtet. Das Störverhalten wird anschließend anhand von Kriterien ​ quantifiziert,​ die die Stabilität,​ die Performance und die Effizienz des Hüpfmusters beschreiben. In der Literatur wird angedeutet, dass der Bereich des stabilen Gehens und Rennens durch simulierte Asymmetrien zwischen den Beinen nicht zwangsläufig verringert wird und sogar für spezielle Asymmetrien des Beinwinkels beim Auftreten erweitert werden kann (Merker et al., 2015; Merker et al., 2011). Hierdurch und durch die Gegebenheiten in der Realität motiviert, wird das Hüpfverhalten unter asymmetrischen Bedingungen betrachtet. Dazu wird das gegebene ​Hüpfmodell um ein zweites Bein erweitert. Anschließend wird anhand von Bodenhöhenvariationen untersucht, in welchem Maße Störungen ausgeglichen werden können und ob sich dies in Abhängigkeit der Feedbackkonfiguration verändert. Des Weiteren wird an diesem Beispiel das Modell validiert, indem ein Vergleich der vorausgesagten Beinsteifigkeit mit experimentellen Ergebnissen angestellt wird. 
 Zuletzt wird geprüft, ob eine adaptive Einstellung der Reflexparameter das Störverhalten verbessern kann. Diese Erkenntnisse können genutzt werden, um die Qualität von Assistenzsystemen,​ wie Prothesen und Orthesen, zu steigern, indem z. B. an den Menschen angepasste Regelungen verwendet werden. Zuletzt wird geprüft, ob eine adaptive Einstellung der Reflexparameter das Störverhalten verbessern kann. Diese Erkenntnisse können genutzt werden, um die Qualität von Assistenzsystemen,​ wie Prothesen und Orthesen, zu steigern, indem z. B. an den Menschen angepasste Regelungen verwendet werden.
  
Zeile 45: Zeile 36:
 S(t)=\lambda_{\rm{F}} \cdot G_{\rm{F}} \cdot \frac{F_{\rm{CE}}}{F_{\rm{max}}}+\lambda_{\rm{L}} \cdot G_{\rm{L}} \cdot (l_{\rm{CE}}-l_{\rm{off}})+\lambda_{\rm{V}} \cdot G_{\rm{V}} \cdot (v_{\rm{CE}}-v_{\rm{off}}) S(t)=\lambda_{\rm{F}} \cdot G_{\rm{F}} \cdot \frac{F_{\rm{CE}}}{F_{\rm{max}}}+\lambda_{\rm{L}} \cdot G_{\rm{L}} \cdot (l_{\rm{CE}}-l_{\rm{off}})+\lambda_{\rm{V}} \cdot G_{\rm{V}} \cdot (v_{\rm{CE}}-v_{\rm{off}})
 \end{equation} \end{equation}
-Um auch Asymmetrien zwischen den Beinen untersuchen zu können, wird das Modell um ein zweites Bein erweitert. Die Bewegungsgleichung unterteilt nach Stand- und Flugphase ergibt sich damit wie folgt:+Um auch Asymmetrien zwischen den Beinen untersuchen zu können, wird dieses ​Modell ​hier um ein zweites Bein erweitert. Die Bewegungsgleichung unterteilt nach Stand- und Flugphase ergibt sich damit wie folgt:
 \begin{equation} \begin{equation}
  \begin{split}  \begin{split}
Zeile 53: Zeile 44:
 \end{equation} \end{equation}
  
-[{{ :​abschlussarbeiten:​msc:​bewegung_des_massenschwerpunkts.png?​600 | Abb.1: Zweibeiniges,​ neuromuskuläres Reflexmodell bestimmt die Bewegung des Massenschwerpunktes in der Standphase (modifiziert nach Schumacher, 2017)}}]+[{{ :​abschlussarbeiten:​msc:​bewegung_des_massenschwerpunkts.png?​600 | Abb. 1: Zweibeiniges,​ neuromuskuläres Reflexmodell bestimmt die Bewegung des Massenschwerpunktes in der Standphase (modifiziert nach Schumacher, 2017)}}]
  
 \\ \\ \\ \\
Zeile 61: Zeile 52:
 ====Untersuchungskriterien==== ====Untersuchungskriterien====
 Zur Analyse der Stabilität wird die **Anzahl der Sprünge** ausgewertet. Es wird definiert, dass stabiles periodisches Hüpfen Zur Analyse der Stabilität wird die **Anzahl der Sprünge** ausgewertet. Es wird definiert, dass stabiles periodisches Hüpfen
-durch das Modell vorhergesagt wird, wenn es 50 Absprünge ​schafft ​(Schumacher,​ 2017).\\+durch das Modell vorhergesagt wird, wenn mindestens ​50 Absprünge ​vorhergesagt werden ​(Schumacher,​ 2017).\\
 Der **Status** wird genutzt, um das jeweilige Modellverhalten zu beschreiben. Werden 50 Absprünge nicht erreicht, wird unterschieden zwischen: Hinfallen, Stehenbleiben und Schwingen. Letzteres ist definiert als ein Schwingen des Massenschwerpunkts,​ ohne dass ein gleichzeitiges Abheben beider Beine beobachtet werden kann. Bei Erreichen der 50 Absprünge werden zwei Fälle unterschieden. Zum einen das quasi-stabile Hüpfen, wenn sich die letzten fünf Maxima der Schwerpunktbewegung unterscheiden und zum anderen stabiles Hüpfen, bei dem 50 Hüpfer durchgeführt werden und die letzten fünf Maxima den gleichen Wert haben.\\ Der **Status** wird genutzt, um das jeweilige Modellverhalten zu beschreiben. Werden 50 Absprünge nicht erreicht, wird unterschieden zwischen: Hinfallen, Stehenbleiben und Schwingen. Letzteres ist definiert als ein Schwingen des Massenschwerpunkts,​ ohne dass ein gleichzeitiges Abheben beider Beine beobachtet werden kann. Bei Erreichen der 50 Absprünge werden zwei Fälle unterschieden. Zum einen das quasi-stabile Hüpfen, wenn sich die letzten fünf Maxima der Schwerpunktbewegung unterscheiden und zum anderen stabiles Hüpfen, bei dem 50 Hüpfer durchgeführt werden und die letzten fünf Maxima den gleichen Wert haben.\\
 Um die Performance zu quantifizieren wird die Hüpfhöhe $\boldsymbol{\Delta h_{\rm{max}}}$ bestimmt. Hierzu werden, falls 50 Absprünge erreicht wurden, die Maxima der Schwerpunktbewegung bestimmt. Die Hüpfhöhe ergibt sich dann aus der Höhe des Massenschwerpunkts im Maximum abzüglich der Beinlänge.\\ Um die Performance zu quantifizieren wird die Hüpfhöhe $\boldsymbol{\Delta h_{\rm{max}}}$ bestimmt. Hierzu werden, falls 50 Absprünge erreicht wurden, die Maxima der Schwerpunktbewegung bestimmt. Die Hüpfhöhe ergibt sich dann aus der Höhe des Massenschwerpunkts im Maximum abzüglich der Beinlänge.\\
-Als weiteres Kriterium zur Charakterisierung der Performance wird die **Hüpffrequenz** $\boldsymbol{f_{\rm{hop}}}$ herangezogen ​werden. Sie +Als weiteres Kriterium zur Charakterisierung der Performance wird die **Hüpffrequenz** $\boldsymbol{f_{\rm{hop}}}$ herangezogen. Sie 
  ​berechnet sich aus dem Verhältnis der Simulationszeit und der Anzahl an Sprüngen.\\  ​berechnet sich aus dem Verhältnis der Simulationszeit und der Anzahl an Sprüngen.\\
 Das Beinverhalten kann durch eine lineare Feder abgebildet werden, wobei die **Beinsteifigkeit** $\boldsymbol{k_{\rm{leg}}}$ aus dem Verhältnis von maximaler Beinkraft und maximaler Kompression des Beins berechnet wird: $k_{\rm{leg}}=F_{\rm{leg_{max}}}/​\Delta l_{\rm{leg}}$ (Farley und Morgenroth, 1999). Die Gesamtsteifigkeit beider Beine ergibt sich aufgrund der parallelen Anordnung aus der Summe beider Beinsteifigkeiten.\\ Das Beinverhalten kann durch eine lineare Feder abgebildet werden, wobei die **Beinsteifigkeit** $\boldsymbol{k_{\rm{leg}}}$ aus dem Verhältnis von maximaler Beinkraft und maximaler Kompression des Beins berechnet wird: $k_{\rm{leg}}=F_{\rm{leg_{max}}}/​\Delta l_{\rm{leg}}$ (Farley und Morgenroth, 1999). Die Gesamtsteifigkeit beider Beine ergibt sich aufgrund der parallelen Anordnung aus der Summe beider Beinsteifigkeiten.\\
Zeile 86: Zeile 77:
  
 ====Sensor-Motor-Maps==== ====Sensor-Motor-Maps====
-Zur Untersuchung des Einflusses der Störungen auf die Untersuchungskriterien werden sogenannte Sensor-Motor-Maps verwendet (Schumacher,​ 2017). Durch sie ist eine Visualisierung des dreidimensionalen Raums der Blendingfaktoren in einem zweidimensionalen Koordinatensystem möglich.\\+Zur Untersuchung des Einflusses der Störungen auf die Untersuchungskriterien werden sogenannte Sensor-Motor-Maps ​(SMM) verwendet (Schumacher,​ 2017). Durch sie ist eine Visualisierung des dreidimensionalen Raums der Blendingfaktoren in einem zweidimensionalen Koordinatensystem möglich.\\
 \\ \\
 Es handelt sich dabei um Dreiecke, wobei verschiedenen Positionen im Dreieck unterschiedliche Reflexkombinationen (Blendings) zugeordnet werden. Die Ecken der Karte entsprechen den isolierten Reflexen, d. h. oben wird reines FFB, links isoliertes VFB und rechts alleiniges LFB verwendet. Umso größer die Entfernung zum jeweiligen Eckpunkt ist, desto kleiner der Anteil des Feedbacks. Im Mittelpunkt haben damit alle Feedbacks den gleichen Anteil. Es handelt sich dabei um Dreiecke, wobei verschiedenen Positionen im Dreieck unterschiedliche Reflexkombinationen (Blendings) zugeordnet werden. Die Ecken der Karte entsprechen den isolierten Reflexen, d. h. oben wird reines FFB, links isoliertes VFB und rechts alleiniges LFB verwendet. Umso größer die Entfernung zum jeweiligen Eckpunkt ist, desto kleiner der Anteil des Feedbacks. Im Mittelpunkt haben damit alle Feedbacks den gleichen Anteil.
 Um den Einfluss von Störungen zu untersuchen,​ können die Topologien der erstellten Sensor-Motor-Maps ohne und mit der Störung verglichen werden.\\ Um den Einfluss von Störungen zu untersuchen,​ können die Topologien der erstellten Sensor-Motor-Maps ohne und mit der Störung verglichen werden.\\
 \\ \\
-Die für die Kartierung verwendeten initialen Reflexparameter,​ also die Gains der Feedbacks $G_{\text{F}}$,​ $G_{\text{L}}$ und $G_{\text{V}}$ sowie die Offsets $l_{\text{off}}$ und $v_{\text{off}}$,​ werden mit Hilfe von Optimierung (Pattern-Search) bestimmt. Als Optimierungskriterien werden die Stabilität (Erreichen von 50 Sprüngen) und die Performance (Hüpfhöhe) gewählt. Es liegt nahe, dass Menschen beim Erlernen von Bewegungen nicht nur einzelne Parameter in Isolation beachten, sondern vielfältige sensorische Signale verarbeiten,​ um die gewünschte Aufgabe möglichst gut zu erfüllen. Daher findet die Optimierung bei gleichen Anteilen aller Feedbacks ($\lambda_{\rm{F}}=\lambda_{\rm{L}}=\lambda_{\rm{V}}=1/​3$) statt. +Die für die Kartierung verwendeten initialen Reflexparameter,​ also die Gains der Feedbacks $G_{\text{F}}$,​ $G_{\text{L}}$ und $G_{\text{V}}$ sowie die Offsets $l_{\text{off}}$ und $v_{\text{off}}$,​ werden mit Hilfe von Optimierung (Pattern-Search) bestimmt. Als Optimierungskriterien werden die Stabilität (Erreichen von 50 Sprüngen) und die Performance (Hüpfhöhe) gewählt. Es liegt nahe, dass Menschen beim Erlernen von Bewegungen nicht nur einzelne Parameter in Isolation beachten, sondern vielfältige sensorische Signale verarbeiten,​ um die gewünschte Aufgabe möglichst gut zu erfüllen. Daher findet die Optimierung bei gleichen Anteilen aller Feedbacks ($\lambda_{\rm{F}}=\lambda_{\rm{L}}=\lambda_{\rm{V}}=1/​3$) statt. Im Optimum sind LFB und FFB positiv, VFB negativ
-====Diskussion ​der Störuntersuchungen==== +====Ergebnisse ​der Störuntersuchungen==== 
-\\ +[{{ :​abschlussarbeiten:​msc:​loff_status_huepfhoehe.png?​400||Abb. 2: Sensor-Motor-Maps des Status (A) und der Hüpfhöhe (B) bei Variation des Offsets des LFBs. Die SMM bei optimalen Parametereinstellungen sind jeweils mittig abgebildet, links nach Verringerung des LFB-Offsets und rechts nach Erhöhung des Offsets.}}]
-\\+
 Für die Variationen der Feedbackgains,​ des VFB-Offsets,​ bei Verrauschen des FFB und des VFB sowie Für die Variationen der Feedbackgains,​ des VFB-Offsets,​ bei Verrauschen des FFB und des VFB sowie
 bei Beinlängen- und Bodensteifigkeitsveränderungen bleiben die Kartierungen sowohl für die Stabilität bei Beinlängen- und Bodensteifigkeitsveränderungen bleiben die Kartierungen sowohl für die Stabilität
Zeile 101: Zeile 91:
 verändert sowohl das Stabilitätsgebiet als auch die betrachteten Hüpfcharakteristiken. Abgesehen vom verändert sowohl das Stabilitätsgebiet als auch die betrachteten Hüpfcharakteristiken. Abgesehen vom
 Delay entstehen die Änderungen des Stabilitätsgebiets durch einen weiteren Instabilitätsbereich,​ für Delay entstehen die Änderungen des Stabilitätsgebiets durch einen weiteren Instabilitätsbereich,​ für
-den Stehenbleiben vorhergesagt wird. Nahe diesem Bereich ist hierdurch auch die Performance und +den Stehenbleiben vorhergesagt wird, wie in Abbildung 2 am Beispiel des LFB-Offsets gezeigt. Nahe diesem Bereich ist hierdurch auch die Performance und 
-damit auch die anderen Hüpfcharakteristiken stark beeinflusst\\+damit auch die anderen Hüpfcharakteristiken stark beeinflusst.\\
 \\ \\
 Für die Verzögerung des FFB und des LFB wird zudem eine stark erhöhte Performance Für die Verzögerung des FFB und des LFB wird zudem eine stark erhöhte Performance
-vorhergesagt,​ während die Performance bei Verzögerung des VFB deutlich abnimmt. ​Auch die anderen +vorhergesagt,​ während die Performance bei Verzögerung des VFB deutlich abnimmt.\\
-Hüpfcharakteristen werden dementsprechend beeinflusst\\+
 \\ \\
 Das Stabilitätsverhalten der meisten Das Stabilitätsverhalten der meisten
Zeile 113: Zeile 102:
 asymmetrischen Störung verstärkt wird. Für die Asymmetrie des Delays des VFB oder aller Feedbacks gilt dies nicht. Hier wird der asymmetrischen Störung verstärkt wird. Für die Asymmetrie des Delays des VFB oder aller Feedbacks gilt dies nicht. Hier wird der
 Effekt der einbeinigen Störung nicht durch zusätzliche Störung des zweiten Beins verstärkt, sondern Effekt der einbeinigen Störung nicht durch zusätzliche Störung des zweiten Beins verstärkt, sondern
-die Verbesserung wieder abgeschwächt.+die Verbesserung wieder abgeschwächt ​(vergleiche Abbildung 3).\\ 
 +[{{:​abschlussarbeiten:​msc:​delay_stabilitaet.png?​500|Abb. 3: Sensor-Motor-Maps der Anzahl der Sprünge. Blau zeigt den Bereich Instabiler Blendings (Fallen im ersten Sprung), rot kennzeichnet das Stabilitätsgebiet (Absolvieren von 50 Sprüngen). Links zeigt die Map bei optimalen Parametereinstellungen,​ mittig bei Verzögerung der Feedbacks im linken Bein und rechts bei Verzögerung in beiden Beinen.}}] 
 +====Diskussion der Störuntersuchungen====
 ===Hüpfverhalten des zweibeinigen Modells im ungestörten Fall=== ===Hüpfverhalten des zweibeinigen Modells im ungestörten Fall===
 Auch in Schumacher (2017) wurden Sensor-Motor-Maps zur Untersuchung des Störverhaltens erstellt. Im Gegensatz Auch in Schumacher (2017) wurden Sensor-Motor-Maps zur Untersuchung des Störverhaltens erstellt. Im Gegensatz
 zu dieser Arbeit wurden die Feedbackparameter dort aber mittels einer Optimierung der Performance zu dieser Arbeit wurden die Feedbackparameter dort aber mittels einer Optimierung der Performance
-der isolierten Feedbacks eingestellt. Daher unterscheiden sich die Topologien der Karten von den hier+der isolierten Feedbacks eingestellt, was zu positiven Feedbacks führt. Daher unterscheiden sich die Topologien der Karten von den hier
 vorgestellten. Dennoch ist das Stabilitätsgebiet auch hier zusammenhängend. Auffällig ist allerdings, vorgestellten. Dennoch ist das Stabilitätsgebiet auch hier zusammenhängend. Auffällig ist allerdings,
 dass in Schumacher (2017) die Stabilitätsgrenze bei wenig performanten Blendings liegt, während in dieser Arbeit eine dass in Schumacher (2017) die Stabilitätsgrenze bei wenig performanten Blendings liegt, während in dieser Arbeit eine
Zeile 131: Zeile 122:
 lässt, da die Verzögerung der Aktivierung schließlich zu groß wird und das schnelle Absinken des lässt, da die Verzögerung der Aktivierung schließlich zu groß wird und das schnelle Absinken des
 Massenschwerpunkts nicht mehr durch die Aktivierung unterbunden wird. Dies könnte der Grund Massenschwerpunkts nicht mehr durch die Aktivierung unterbunden wird. Dies könnte der Grund
-dafür sein, dass in der Sensor-Motor-Map die harte Grenze entsteht+dafür sein, dass in den Sensor-Motor-Maps dieser Arbeit eine harte Grenze entsteht.
-\\ +
-\\ +
-Trotz der Erweiterung des Modells um ein zweites Bein werden vergleichbare Werte zu Simulationsergebnissen des einbeinigen Modells für die Hüpffrequenz und die Beinsteifigkeit gefunden (Farley und Morgenroth, 1999; Geyer, 2005; Schumacher, 2017).+
 \\ \\
 \\ \\
Zeile 148: Zeile 136:
 Durch $l_{\text{off}}$ wird daher eine frühzeitige Aktivierung des Muskels unterdrückt (Geyer et al., 2003; Schumacher, 2017). Bei Durch $l_{\text{off}}$ wird daher eine frühzeitige Aktivierung des Muskels unterdrückt (Geyer et al., 2003; Schumacher, 2017). Bei
 einem verringertem $l_{\text{off}}$ wird somit die Absenkung des Massenschwerpunkts frühzeitig gestoppt, da der Muskel bereits aktiviert ist und zu kontrahieren beginnt. Hierdurch ist auch die Zeit zur Beschleunigung bis zum TO verkürzt, wodurch eine geringere Geschwindigkeit im TO erreicht wird einem verringertem $l_{\text{off}}$ wird somit die Absenkung des Massenschwerpunkts frühzeitig gestoppt, da der Muskel bereits aktiviert ist und zu kontrahieren beginnt. Hierdurch ist auch die Zeit zur Beschleunigung bis zum TO verkürzt, wodurch eine geringere Geschwindigkeit im TO erreicht wird
-und damit ein deutlicher Einfluss auf die Performance entsteht. ​Durch die geringere Geschwindigkeit ist die kinetische Energie verringert und damit auch die potentielle Energie im Maximum. Es kommt zu einer niedrigeren Hüpfhöhe. Hierdurch entsteht auch eine erhöhte Steifigkeit,​ da das Modell weniger stark einsinkt und damit $k_{\text{leg}}=F_{\text{leg}_{\text{max}}}/​\Delta l_{\text{leg}}$ vergrößert wird. Bei Vergrößerung ​von $l_{\text{off}}$ ​wird das Bein weiter verkürzt, wodurch bis zum Abheben eine höhere Geschwindigkeit erreicht wird. Hierdurch wird die Performance mit Anteilen von LFB stark erhöhtallerdings das Stabilitätsgebiet verkleinertda der kritische Punkt des VFB schon früher erreicht wird.\\+und damit ein deutlicher Einfluss auf die Performance entsteht. 
 +Die Variation ​von $v_{\text{off}}$ ​hat hingegen nur sehr wenig Einfluss auf die Sensor-Motor-Mapswas daran liegen könntedass der Offset besonders zu Beginn starken Einfluss auf die Aktivierung hat, wenn die Kraft-Geschwindigkeits- und die Kraft-Längen-Funktion noch in Bereichen geringer Kraft sind.\\
 \\ \\
-Die Variation von hat hingegen nur sehr wenig Einfluss auf die Sensor-Motor-Maps,​ was zum einen $v_{\text{off}}$ daran liegen könnte, dass der Offset besonders zu Beginn starken Einfluss auf die Aktivierung hat, wenn die Kraft-Geschwindigkeits- und die Kraft-Längen-Funktion noch in Bereichen geringer Kraft sind, da die Geschwindigkeit hoch ist und die Länge das Optimum noch nicht erreicht hat.\\ +Wie auch in Geyer (2005) ​gefunden, ​können die Verzögerung von positivem ​FFB und positivem ​LFB die Performance ​verbessern. Die Verzögern des negativen VFB hingegen führt ​zu einer verschlechterten Performance.
-\\ +
-Die Muskelgeschwindigkeit nimmt kurz nach dem TD etwa sechsfache Werte der $v_{\text{CE}}$ Muskellänge $l_{\text{CE}}$ an. Der Offset des VFB ist im ungestörten Fall hingegen nur etwa doppelt so groß wie der des LFB. Wird für beide Feedbacks der Offset um 20% gegenüber dem optimalen Wert verringert,​ +
-so ist die Änderung des Stimulationssignals des LFB $(S_{\text{LFB}} (t)=G_{\text{L}}*(l_{\text{CE}}-l_{\text{off}})) $ prozentual größer als die +
-des Stimulationssignals des VFB $(S_{\text{VFB}} (t)=G_{\text{V}}*(v_{\text{CE}}-v_{\text{off}})) $. Dies wird zusätzlich durch den größeren +
-Gain des LFB verstärkt. Die Aktivierung wird daher bei Variation von $v_{\text{off}}$ weniger beeinflusst und damit auch das Hüpfverhalten nur geringfügig verändert.\\ +
-\\ +
-Bei Aufschalten der Delays kommt es für verschiedene Blendings zu Peaks im Kraftverlauf (siehe Abbildung 3.11). Dies ist kein physiologisches Verhalten. Es könnte darauf hindeuten, dass das verwendete stark vereinfachte biomechanische Modell bei diesem Delay physiologisch sinnvolle Hüpfmuster nicht mehr abbilden kann und die Grenzen des Systems erreicht sind. Durch ein detaillierteres Modell, das aus mehreren parallelen Muskelfasern mit solchen Signalen besteht, könnte ein physiologisch sinnvolleres Verhalten erzeugt werden. Leicht abweichende Verzögerungen der Sensorsignale der einzelnen Muskelfasern würden dann zu einer Glättung des Verlaufs führen.\\ +
-\\ +
-In Geyer (2005) ​kann die Hüpfperformance von positiven Feedbacks durch die anfängliche Unterdrückung der Sensorsignale verbessert werden.\\ +
-\\ +
-Diese Ergebnisse ​können ​ebenso hier gefunden werden. Durch die Verzögerung von FFB und LFB kann die Performance ​verbessert werden, während das Verzögern des negativen VFB zu einer verschlechterten Performance ​führt.+
 Außerdem werden die Stabilitätsbereiche durch Verzögern von FFB und LFB verkleinert,​ was darauf hindeutet, dass das Hüpfverhalten bei äußeren Störungen leichter destabilisiert wird.\\ Außerdem werden die Stabilitätsbereiche durch Verzögern von FFB und LFB verkleinert,​ was darauf hindeutet, dass das Hüpfverhalten bei äußeren Störungen leichter destabilisiert wird.\\
 \\ \\
-Rauschen aller Feedbacks hauptsächlich durch das Rauschen des LFB beeinflusst werden. Beim Verrauschen des FFB und des VFB veränderte sich das Hüpfverhalten kaum. Wie schon für den Offset beschrieben,​ ist die Sensitivität des LFB größer als die des VFB.\\ +Die SMM bei Rauschen aller Feedbacks ​wird hauptsächlich durch das Rauschen des LFB beeinflusst werden. Beim Verrauschen des FFB und des VFB veränderte sich das Hüpfverhalten kaum. Durch das Rauschen wird $l_{\text{off}}$ 
-\\ +immer wieder überschritten,​ was eine frühzeitigen Aktivierung des Muskels auslöst, wodurch die Performance ​abnimmt. Aufgrund der frühere Aktivierung durch das LFB wird der verzögerten Aktivierung durch das VFB entgegengewirkt und damit die kritische Grenze des VFB verschoben.\\
-Rauschen aller Feedbacks hauptsächlich durch das Rauschen des LFB beeinflusst werden. Beim Verrauschen des FFB und des VFB veränderte sich das Hüpfverhalten kaum. Wie schon für den Offset beschrieben,​ ist die Sensitivität des LFB größer als die des VFB. Durch das Rauschen wird $l_{\text{off}}$ +
-immer wieder überschritten,​ was eine frühzeitigen Aktivierung des Muskels auslöstPerformance ​nimmt ab. Vergrößerung des Stabilitätsbereichs erklären. Aufgrund der frühere Aktivierung durch das LFB wird der verzögerten Aktivierung durch das VFB entgegengewirkt und damit die kritische Grenze +
-des VFB verschoben.\\+
 \\ \\
 Bei verringerter Bodensteifigkeit konnte eine Erhöhung der Performance und eine verringerte Beinsteifigkeit festgestellt werden. Diese Ergebnisse entsprechen dem Störverhalten des einbeinigen Modells in Schumacher (2017). Allerdings widersprechen sie experimentellen Ergebnissen. In Ferris und Farley (1997) konnte gezeigt werden, dass der Mensch bei unterschiedlichen Bodensteifigkeiten die Beinsteifigkeit anpasst, sodass die Gesamtsteifigkeit aus Bein und Boden konstant bleibt, also bei einer Verringerung der Bodensteifigkeit eine höhere Beinsteifigkeit hat. Bei verringerter Bodensteifigkeit konnte eine Erhöhung der Performance und eine verringerte Beinsteifigkeit festgestellt werden. Diese Ergebnisse entsprechen dem Störverhalten des einbeinigen Modells in Schumacher (2017). Allerdings widersprechen sie experimentellen Ergebnissen. In Ferris und Farley (1997) konnte gezeigt werden, dass der Mensch bei unterschiedlichen Bodensteifigkeiten die Beinsteifigkeit anpasst, sodass die Gesamtsteifigkeit aus Bein und Boden konstant bleibt, also bei einer Verringerung der Bodensteifigkeit eine höhere Beinsteifigkeit hat.
Zeile 178: Zeile 153:
 \\ \\
 Besonders auffällig ist, dass eine asymmetrische Aufschaltung eines Delays zu einem vergrößerten Stabilitätsgebiet führt. Die Kombination aus „schnellem“ und „langsamem Bein“ scheint eine stabilisierende Wirkung für Blendings mit ähnlichen Anteilen aller Feedbacks zu haben. Die kurz nacheinander aktivierierenden Muskeln der zwei Beine führen wie die in anderen Winkeln aufkommenden Beine bei der Untersuchung von Merker (2011) zu einer Stabilisierung von im Referenzfall instabilen Feedback Besonders auffällig ist, dass eine asymmetrische Aufschaltung eines Delays zu einem vergrößerten Stabilitätsgebiet führt. Die Kombination aus „schnellem“ und „langsamem Bein“ scheint eine stabilisierende Wirkung für Blendings mit ähnlichen Anteilen aller Feedbacks zu haben. Die kurz nacheinander aktivierierenden Muskeln der zwei Beine führen wie die in anderen Winkeln aufkommenden Beine bei der Untersuchung von Merker (2011) zu einer Stabilisierung von im Referenzfall instabilen Feedback
-zusammensetzungen.\\ +zusammensetzungen. Die Stabilität wird somit durch die Asymmetrie verbessert, jedoch wird dadurch das Systemverhalten schwieriger voraussagbar,​ da häufig quasi-stabiles Hüpfen auftritt und es kommt zu Einbußen der Performance.\\
-\\ +
-Die Stabilität wird somit durch die Asymmetrie verbessert, jedoch wird dadurch das Systemverhalten schwieriger voraussagbar,​ da häufig quasi-stabiles Hüpfen auftritt und es kommt zu Einbußen der Performance.\\+
 \\ \\
 Für die asymmetrische Erhöhung von $l_{\text{off}}$ wird bei Blendings nahe des isolierten LFB Stehenbleiben vorausgesagt. Dies kann bei symmetrischer Erhöhung nicht gefunden werden. Durch die Erhöhung des Offsets wird der Muskel des linken Beins erst später aktiviert als der des rechten Beins. Entgegen der sonst auf die Performance positiv wirkenden Verzögerung der Aktivierung,​ führt dies hier vermutlich Für die asymmetrische Erhöhung von $l_{\text{off}}$ wird bei Blendings nahe des isolierten LFB Stehenbleiben vorausgesagt. Dies kann bei symmetrischer Erhöhung nicht gefunden werden. Durch die Erhöhung des Offsets wird der Muskel des linken Beins erst später aktiviert als der des rechten Beins. Entgegen der sonst auf die Performance positiv wirkenden Verzögerung der Aktivierung,​ führt dies hier vermutlich
 dazu, dass das Hüpfen hauptsächlich aus dem rechten Bein entsteht und das linke Bein schon kurz nach Anstieg der Aktivierung wieder abhebt. Es kommt dann zum Stehenbleiben,​ wenn die Aktivierung des linken Beins so gering zum Hüpfen beiträgt, dass das Modell den TO nicht mehr erreicht und daraufhin dazu, dass das Hüpfen hauptsächlich aus dem rechten Bein entsteht und das linke Bein schon kurz nach Anstieg der Aktivierung wieder abhebt. Es kommt dann zum Stehenbleiben,​ wenn die Aktivierung des linken Beins so gering zum Hüpfen beiträgt, dass das Modell den TO nicht mehr erreicht und daraufhin
 stehenbleibt. Das Stehenbleiben bei der asymmetrischen Beinlängenveränderung ergibt sich vermutlich aus ähnlichen Prozessen.\\ stehenbleibt. Das Stehenbleiben bei der asymmetrischen Beinlängenveränderung ergibt sich vermutlich aus ähnlichen Prozessen.\\
-\\ 
-Nur für den Delay konnte die stabilisiernde Wirkung von Asymmetrien,​ wie in Merker (2011, 2015) beschrieben,​ gefunden werden. Allerdings werden dort verschiedene Stufen der Asymmetrie getestet, wobei keine allgemein verbesserte Stabilität gefunden, sondern lediglich für einen bestimmten Wert einer Asymmetrie ein positiver Effekt festgestellt wird. In dieser Arbeit wurden jeweils nur zwei Konfigurationen der Asymmetrie betrachtet. In weitergehenden Untersuchung sollten weitere Asymmetrieeinstellungen untersucht werden. Hierbei sollte die Asymmetrie immer weiter gesteigert und gleichzeitig die Stabilität beobachtet werden. 
 \\ \\
 \\ \\
  
  
-==== Zweibeiniges Hüpfen mit Bodenhöhenstörungen====+===== Zweibeiniges Hüpfen mit Bodenhöhenstörungen=====
 Im letzten Abschnitt wurden Tendenzen festgestellt,​ wie sich das Hüpfverhalten durch Einprägen von Störungen verändert. Dies wird in diesem Abschnitt erweitert. Dazu wird die Kapazität des Modells, Störungen auszugleichen,​ anhand von Bodenhöhenvariationen bei verschiedenen Feedbackzusammensetzungen untersucht. Außerdem wird anhand der Beinsteifigkeit bei dieser Störung das Modellverhalten mit experimentellen Ergebnissen verglichen.\\ Im letzten Abschnitt wurden Tendenzen festgestellt,​ wie sich das Hüpfverhalten durch Einprägen von Störungen verändert. Dies wird in diesem Abschnitt erweitert. Dazu wird die Kapazität des Modells, Störungen auszugleichen,​ anhand von Bodenhöhenvariationen bei verschiedenen Feedbackzusammensetzungen untersucht. Außerdem wird anhand der Beinsteifigkeit bei dieser Störung das Modellverhalten mit experimentellen Ergebnissen verglichen.\\
 \\ \\
Zeile 200: Zeile 171:
 (Institut für Sportwissenschaften,​ TU Darmstadt) verwendet. In den Experimenten wurden unerwartete Bodenabsenkungen durchgeführt. Die Probanden hüpfen dazu auf einer Kraftmessplatte. Des Weiteren werden Marker an verschiedenen Stellen des Körpers positioniert,​ deren Lage während dem Hüpfen durch ein Motion Capture System erfasst wird.\\ (Institut für Sportwissenschaften,​ TU Darmstadt) verwendet. In den Experimenten wurden unerwartete Bodenabsenkungen durchgeführt. Die Probanden hüpfen dazu auf einer Kraftmessplatte. Des Weiteren werden Marker an verschiedenen Stellen des Körpers positioniert,​ deren Lage während dem Hüpfen durch ein Motion Capture System erfasst wird.\\
 \\ \\
-Der Mensch bevorzugt meist Bewegungen mit geringen metabolischen Kosten ​[40]. Daher werden für den Vergleich zwischen Experiment und Modell ​die effizienz-optimierten Feedbackparameter herangezogen. Als Vergleichsgröße wird die Beinsteifigkeit gewählt, da sie zum einen ein entscheidender Parameter der Dynamik des Rennens ist ([21]) und zum anderen leicht berechnet werden kann.\\+Der Mensch bevorzugt meist Bewegungen mit geringen metabolischen Kosten ​(McNeill, 2002). Daher werden für den Vergleich zwischen Experiment und Modell effizienz-optimierten Feedbackparameter herangezogen. Als Vergleichsgröße wird die Beinsteifigkeit gewählt, da sie zum einen ein entscheidender Parameter der Dynamik des Rennens ist (Ferris, Louie und Farley, 1998) und zum anderen leicht berechnet werden kann.\\
 \\ \\
  
-===Ergebnisse=== +====Simulative Ergebnisse der Störversuche bei Bodenhöhenvariationen==== 
-==Simulative Ergebnisse der Störversuche bei Bodenhöhenvariationen==+[{{ :​abschlussarbeiten:​msc:​groundleveldiscrepancies.png?​350| Abb. 4: Stabilisierte Bodenhöhenänderungen bei verschiedenen Feedbackzusammensetzungen und unterschiedlichen Optimierungszielen. Die schwarzen Linien geben die Fußpunkthöhe im Apex an. Rot kennzeichnet eine Bodenerhöhung,​ blau eine Bodenabsenkung.}}]
 Für alle simulierten Bodenhöhenänderungen wurde nach der Störung entweder stabiles Hüpfen oder Für alle simulierten Bodenhöhenänderungen wurde nach der Störung entweder stabiles Hüpfen oder
 Hinfallen detektiert. Zudem erreicht das Modell nach der Störung wieder die gleiche Hüpfhöhe.\\ Hinfallen detektiert. Zudem erreicht das Modell nach der Störung wieder die gleiche Hüpfhöhe.\\
 Die größten Bodenanhebungen können durch das performance-optimierte geblendete Feedback Die größten Bodenanhebungen können durch das performance-optimierte geblendete Feedback
 stabilisiert werden, während isoliertes performance-optimiertes FFB die geringsten stabilisiert werden, während isoliertes performance-optimiertes FFB die geringsten
-Erhöhungen ausgleicht ​ (Bild). \\+Erhöhungen ausgleicht ​ (Abbildung 4). \\
 Das performance-optimierte geblendete Feedback führt zur höchsten Sensibilität des Modells auf Das performance-optimierte geblendete Feedback führt zur höchsten Sensibilität des Modells auf
-Bodenabsenkungen.Das performance-optimierte LFB stabilisiert Bodenabsenkungen am besten.\\+Bodenabsenkungen. Das performance-optimierte LFB stabilisiert Bodenabsenkungen am besten.\\
 Werden die Feedbackparameter im geblendeten Fall effizienz-optimiert eingestellt,​ führt dies zu einer größeren Robustheit gegenüber Bodenabsenkungen.\\ Werden die Feedbackparameter im geblendeten Fall effizienz-optimiert eingestellt,​ führt dies zu einer größeren Robustheit gegenüber Bodenabsenkungen.\\
 \\ \\
-Thesis Bild (Wiki) –Stabilisierte Bodenhöhenänderungen bei verschiedenen Feedbackzusammensetzungen und unterschiedlichen Optimierungszielen. Die schwarzen Linien geben die Fußpunkthöhe im Apex an. Rot kennzeichnet eine Bodenerhöhung,​ blau eine Bodenabsenkung.\\ + 
-\\ +====Vergleich des Störverhaltens von Modell und Mensch==== 
-==Vergleich des Störverhaltens von Modell und Mensch== +[{{ :​abschlussarbeiten:​msc:​beinsteifigkeit_sim_exp.png?​400| Abb. 5: Vergleich der Beinsteifigkeit im Experiment (Proband 1 blau und 2 rot) und in der Simulation (grün) für eine Bodenabsenkung von 50 mm. Für die experimentelle Steifigkeit wurde der arithmetische Mittelwert der acht Trials je Faktorstufe berechnet und aufgetragen.}}] 
-[{{ :​abschlussarbeiten:​msc:​beinsteifigkeit_sim_exp.png?​400| Abb. 2: Vergleich der Beinsteifigkeit im Experiment (Proband 1 blau und 2 rot) und in der Simulation (grün) für eine Bodenabsenkung von 50 mm. Für die experimentelle Steifigkeit wurde der arithmetische Mittelwert der acht Trials je Faktorstufe berechnet und aufgetragen.}}] +Wie durch die Simulation vorhergesagt, ​können ​die Probanden ​die Bodenhöhenveränderung ausgleichen. Sie hüpfen nach der Bodenabsenkung mit annähernd gleicher Hüpfhöhe.\\
-Die Probanden ​können die Bodenhöhenveränderung ​wie das simulativ gestörte Modell ​ausgleichen. Sie hüpfen nach der Bodenabsenkung mit annähernd gleicher Hüpfhöhe.\\+
 Auch die Beinsteifigkeit wird nach der Störung wieder wie vor der Störung eingestellt. Auch die Beinsteifigkeit wird nach der Störung wieder wie vor der Störung eingestellt.
-Im gestörten Sprung selbst, weichen die Steifigkeiten sowohl für das Modell als auch für Proband 2 von der ungestörten Steifigkeit ab. Das Modell hat in diesem Sprung eine verringerte Steifigkeit,​ hingegen ist die des Probanden erhöht. Dabei ist die Verringerung beim Modell wie auch die Erhöhung beim Probanden umso stärker, je größer die Bodenabsenkung ist. Proband 1 zeigt keine generelle Anpassung der Steifigkeit ​(Abbildung).\\+Im gestörten Sprung selbst, weichen die Steifigkeiten sowohl für das Modell als auch für Proband 2 von der ungestörten Steifigkeit ab. Das Modell hat in diesem Sprung eine verringerte Steifigkeit,​ hingegen ist die des Probanden erhöht ​(Abbildung 5). Dabei ist die Verringerung beim Modell wie auch die Erhöhung beim Probanden umso stärker, je größer die Bodenabsenkung ist. Proband 1 zeigt keine generelle Anpassung der Steifigkeit.\\
  
  
 ===Diskussion=== ===Diskussion===
 == Fallrisiko durch Bodenhöhenänderung bei verschiedenen Reflexparametern== == Fallrisiko durch Bodenhöhenänderung bei verschiedenen Reflexparametern==
-Auffällig ist, dass das performance-optimierte geblendete Feedback nur sehr geringe Bodenabsenkungen stabilisieren kann. Wie schon im vorherigen Kapitel diskutiert, ist zu vermuten, dass das System sich aufgrund der Optimierung der Performance mit Anteilen von negativem VFB an einer Grenze befindet. Wird der Boden abgesenkt, wird die TD-Geschwindigkeit erhöht, da eine längere Falldauer entsteht. Dies kann durch die verzögerte Aktivierung nicht rechtzeitig abgebremst werden, weshalb nur sehr kleine Bodenabsenkungen ausgleichbar sind.\\ 
 Allgemein kann festgehalten werden, dass weniger performante Feedbacks eine größere Robustheit gegenüber Bodenabsenkungen aufweisen. Ist die Performance des Systems hoch, ist auch die potentielle Energie im Apex hoch und damit die TD-Geschwindigkeit höher als bei weniger performanten Einstellungen. Wird nun zusätzlich noch weitere Energie durch eine Bodenabsenkung hinzugefügt,​ wird das Bein noch weiter gebeugt und damit der Muskeln überdehnt. Vermutlich befindet sich der Muskel dann in Bereichen, in denen aufgrund der Kraft-Längen-Funktion nur noch geringe Kräfte erzeugt werden können. Daher kollabiert das Modell in der Standphase. Dies zeigt, dass unterschiedliche Feedbackblendings und Parametereinstellungen für verschiedene Aufgaben besser geeignet sind.\\ Allgemein kann festgehalten werden, dass weniger performante Feedbacks eine größere Robustheit gegenüber Bodenabsenkungen aufweisen. Ist die Performance des Systems hoch, ist auch die potentielle Energie im Apex hoch und damit die TD-Geschwindigkeit höher als bei weniger performanten Einstellungen. Wird nun zusätzlich noch weitere Energie durch eine Bodenabsenkung hinzugefügt,​ wird das Bein noch weiter gebeugt und damit der Muskeln überdehnt. Vermutlich befindet sich der Muskel dann in Bereichen, in denen aufgrund der Kraft-Längen-Funktion nur noch geringe Kräfte erzeugt werden können. Daher kollabiert das Modell in der Standphase. Dies zeigt, dass unterschiedliche Feedbackblendings und Parametereinstellungen für verschiedene Aufgaben besser geeignet sind.\\
-In [27] wurde bei Kombination von Feedforward und Feedback eine schnellere Ausregelung gefunden. In dieser Arbeit wurde die Ausregelzeit nicht bestimmt. In weitergehenden Untersuchungen sollten die verschiedenen Feedbackkombinationen zusätzlich auf ihre Ausregelzeit getestet werden.\\ 
  
 == Diskussion des Vergleichs von Simulation und Experiment== == Diskussion des Vergleichs von Simulation und Experiment==
-Die Anpassungsstrategien des Menschen bei unterschiedlich nachgiebigem Boden sind häufig diskutiert. Für weicher werdenden Boden nimmt die Beinsteifigkeit zu. [43][20]+Die Anpassungsstrategien des Menschen bei unterschiedlich nachgiebigem Boden sind häufig diskutiert. Für weicher werdenden Boden nimmt die Beinsteifigkeit zu. (Moritz und Farley2004),​(Ferris und Farley, 1999)
 \\ \\
-Wird die Bodenhöhenabsenkung als unendlich nachgiebiger Boden betrachtet, so sollte die Beinsteifigkeit bei Aufkommen auf dem unerwarteten Boden stark erhöht sein. Dies kann im Experiment für Proband 2 festgestellt werden (Abbildung).\\+Wird die Bodenhöhenabsenkung als unendlich nachgiebiger Boden betrachtet, so sollte die Beinsteifigkeit bei Aufkommen auf dem unerwarteten Boden stark erhöht sein. Dies kann im Experiment für Proband 2 festgestellt werden (Abbildung ​5).\\
 \\ \\
-In Experimenten mit einem falschen Boden konnte ein Anstieg der Muskelaktivität bei Durchfallen +In Müller ​und Blickhan ​(2010) werden weitere Experimente durchgeführt,​ bei denen Probanden Stufen von 10 cm sowohl
-dessen festgestellt werden [39]. Kommt der Proband dann auf, sind Kraft-Längen- ​und Kraft- +
-Geschwindigkeitsfunktion noch in einem Bereich geringer Kraftentwicklung. Durch die hohe +
-Aktivierung wird aber schon nach geringer Verkürzung des Beins (und damit Dehnung des Muskels) +
-die Kraft durch die intrinsischen Eigenschaften verstärkt. Es kommt zur Kontraktion des Muskels +
-und damit zum Stoppen der Beinverkürzung.\\ +
-\\ +
-In [44] werden weitere Experimente durchgeführt,​ bei denen Probanden Stufen von 10 cm sowohl+
 auf- als auch abwärts rennen. Bei der Erhöhung des Bodens ist die Beinsteifigkeit umso geringer, je größer der Bodenanstieg eingestellt wird. Dies entspricht der in der Literatur bekannten Anpassung der Beinsteifigkeit auf steifer werdendem Boden. Für das Abwärtslaufen wird allerdings eine annähern konstante Beinsteifigkeit gefunden. Dieses Ergebnis ist in Übereinstimmung mit der Reaktion von Proband 1 auf die Bodenhöhenstörung.\\ auf- als auch abwärts rennen. Bei der Erhöhung des Bodens ist die Beinsteifigkeit umso geringer, je größer der Bodenanstieg eingestellt wird. Dies entspricht der in der Literatur bekannten Anpassung der Beinsteifigkeit auf steifer werdendem Boden. Für das Abwärtslaufen wird allerdings eine annähern konstante Beinsteifigkeit gefunden. Dieses Ergebnis ist in Übereinstimmung mit der Reaktion von Proband 1 auf die Bodenhöhenstörung.\\
-Dies spricht dafür, dass die Anpassung des zweiten Probanden nicht der gewöhnlichen Reaktion auf +Dennoch springt Proband 1 auch in den ungestörten Sprüngen mit ungewöhnlich hohen Beinsteifigkeiten für bevorzugtes Hüpfen. Sie beträgt etwa 24 kN/m , während in Farley und Morgenroth (1999) ​von einer Beinsteifigkeit von etwa 14,5 kN/m bei präferierter Hüpfhöhe berichtet wird. Es ist möglich, dass der Proband seine Beine dauerhaft versteift hat, da er dem Fallrisiko entgegenwirken wollte.\\ 
-Bodenabsenkungen entspricht. ​Dennoch springt Proband 1 auch in den ungestörten Sprüngen mit ungewöhnlich hohen Beinsteifigkeiten für bevorzugtes Hüpfen. Sie beträgt etwa 24 kN/m , während in [19] von einer Beinsteifigkeit von etwa 14,5 kN/m bei präferierter Hüpfhöhe berichtet wird. Es ist möglich, dass der Proband seine Beine dauerhaft versteift hat, da er dem Fallrisiko entgegenwirken wollte.\\ +Außerdem sind die oben angeführten Experimente beim Rennen durchgeführt worden. Nicht alle Ergebnisse und Regelstrategien des Menschen beim Gehen oder Rennen sind auf das Hüpfen übertragbar ​(Darley und Biewener, 2006). Da die Ergebnisse der Probanden so stark voneinander abweichen, sollten zur Untersuchung der Anpassungsstrategie des Menschen bei Bodenhöhenvariationen weitere Probandenversuche durchgeführt werden.\\
-Außerdem sind die oben angeführten Experimente beim Rennen durchgeführt worden. Nicht alle Ergebnisse und Regelstrategien des Menschen beim Gehen oder Rennen sind auf das Hüpfen übertragbar ​[8]. Da die Ergebnisse der Probanden so stark voneinander abweichen, sollten zur Untersuchung der Anpassungsstrategie des Menschen bei Bodenhöhenvariationen weitere Probandenversuche durchgeführt werden.\\+
 \\ \\
 Unabhängig davon, ob die Ergebnisse von Proband 1 oder 2 betrachtet werden, verändert sich die Unabhängig davon, ob die Ergebnisse von Proband 1 oder 2 betrachtet werden, verändert sich die
-Beinsteifigkeit des Modells in anderer Weise. In der Standphase nach der Störung ist für beide Probanden die GRF erhöht. Dies deutet daher auf eine höhere Hierarchiebene der motorischen Kontrolle, z. B. durch höhere Gehirnareale,​ zur Einstellung der Beinsteifigkeit hin. Das Reafferenzprinzip ​[63] stellt ein Regelkonzept dar, welches hilft, erwartete Reize zu unterdrücken,​ sodass höher relevante Reize, z. B. unerwartete,​ verstärkt werden. Dazu werden eigene Bewegungen aus der sensorischen Information herausgerechnet. Dies würde für das Hüpfen bedeuten, solange die Bewegung wie erwartet ausgeführt wird, stabilisiert die unterste Ebene die Bewegung und die Reize, die hierbei auf den Menschen einwirken, werden unterdrückt. Kommt es zu einer von der Erwartung abweichenden Bewegung, wie frühzeitiges oder verspätetes Aufkommen, wird dies von übergeordneten Zentren ausgeglichen. Dies könnte eine Erklärung für die veränderte Steifigkeit gegenüber dem Modell sein.\\ +Beinsteifigkeit des Modells in anderer Weise. In der Standphase nach der Störung ist für beide Probanden die GRF erhöht. Dies deutet daher auf eine höhere Hierarchiebene der motorischen Kontrolle, z. B. durch höhere Gehirnareale,​ zur Einstellung der Beinsteifigkeit hin. Das Reafferenzprinzip ​(Wolpert und Flanagan, 2001) stellt ein Regelkonzept dar, welches hilft, erwartete Reize zu unterdrücken,​ sodass höher relevante Reize, z. B. unerwartete,​ verstärkt werden. Dazu werden eigene Bewegungen aus der sensorischen Information herausgerechnet. Dies würde für das Hüpfen bedeuten, solange die Bewegung wie erwartet ausgeführt wird, stabilisiert die unterste Ebene die Bewegung und die Reize, die hierbei auf den Menschen einwirken, werden unterdrückt. Kommt es zu einer von der Erwartung abweichenden Bewegung, wie frühzeitiges oder verspätetes Aufkommen, wird dies von übergeordneten Zentren ausgeglichen. Dies könnte eine Erklärung für die veränderte Steifigkeit gegenüber dem Modell sein.\\
-Proband 2 ist allerdings mit 1,63m Körperhöhe deutlich kleiner als Proband 1, der 1,79m groß ist. Es ist denkbar, dass kleinere Menschen nur ein geringeres Einsinken des Massenschwerpunkt zulassen.\\+
 \\ \\
-In weiteren Untersuchungen sollte außerdem das Alter beachtet werden. In [32] wird gezeigt, dass ältere Menschen beim Treppenabstieg ihr Bein durch Aktivierung der Muskulatur deutlich versteifen, um ihre neuromotorischen Beeinträchtigungen,​ wie eine geringere Muskelspannung,​ zu kompensieren. 
- 
-==== Unterpunkt 2 ==== 
-Es gibt auch die Möglichkeit Videos einzubinden... dieses Beispielvideo zeigt Hochgeschwindigkeitsaufnahmen von Vorwärts- bzw. Rückwärtssaltos:​ 
- 
-{{ youtube>​large:​CuVB8YpQlYQ|by Slo Mo Guys }} 
 \\ \\
 +===== Adaptive Reflexparameter =====
 +In den letzten Abschnitten konnte festgestellt werden, dass das Störverhalten von der Einstellung der Feedbackparameter
 +sowie von der Feedbackzusammensetzung zur Aktivierung des Muskels abhängt. Des Weiteren hat der Vergleich zwischen Simulation und Experiment ergeben, dass die Regulation der Beinsteifigkeit des Menschen durch Feedbacks mit konstanten Parametern nicht abgebildet werden kann. Daher wird für das reflexbasierte Modell eine übergeordnete Regelung benötigt, die eine Anpassung der Beinsteifigkeit nachempfindet. Hierzu wird zunächst eine lineare
 +Anpassung der Feedbackverstärkung an die Fallhöhe getestet (in Anlehnung an Blum, Rummel und Seyfarth (2007)).\\
 +\\
 +Die in der Simulation beobachtete verringerte Gesamtbeinsteifigkeit ist eine Folge einer stärkeren Beinverkürzung. Dies führt letztendlich dazu, dass das Modell bei einer zu hohen Bodenabsenkung hinfällt, da das Bein zu stark verkürzt wird. Aufgrund dieser Verkürzung wird der Muskel überdehnt, wodurch die Kraft-Längen-Funktion sich in einem Bereich befindet, in dem nur geringe Kräfte erreicht werden können. Auch eine große Aktivierung führt dann aufgrund des multiplikativen Zusammenhangs nur zu geringen Muskelkräften. Um bei verringerter Bodenhöhe und damit höherer TD-Geschwindigkeit das zu starke Einsinken zu verhindern, muss die Aktivierung früher ansteigen, was mit einer höheren Beinsteifigkeit einhergeht.\\
 +\\
 +Die Erhöhung der Muskelaktivität bei unerwartet tiefem Fallen konnte auch in experimentellen
 +Versuchen gezeigt werden (Donelan und Kram, 2001). Des Weiteren wird in der Literatur angedeutet, dass der Mensch
 +die Feedbackparameter aufgabenabhängig anpasst (Prochazka, Gillard und Bennett,​1997). Daher ist zu vermuten, dass dies auch bei
 +verschiedenen Störungen, wie einer tieferen Fallhöhe, passiert. Ziel ist daher, die Erhöhung der
 +Beinsteifigkeit durch einen früheren Anstieg der Muskelaktivität,​ um höhere TD-Geschwindigkeiten
 +abbremsen zu können und damit größere Bodenabsenkungen auszugleichen. Dies soll durch Anpassung
 +der Feedbackparameter erreicht werden.\\
 +\\
 +Eine höhere Beinsteifigkeit kann beispielsweise durch Erhöhung von $G_{\text{F}}$ erreicht werden. Da das Modell sich in der
 +Flugphase im freien Fall befindet, sind Falldauer und Falltiefe proportional. Je höher die Falltiefe, desto
 +früher muss der Muskel nach dem TD aktivieren, um das Fallen abbremsen zu können. Daher soll $G_{\text{F}}$ ​
 +mit der Falldauer zunehmen, sodass nach dem TD die Aktivierung früher ansteigt. \\
 \\ \\
 +Zunächst werden zwei lineare Zusammenhänge zwischen Gain und Fallzeit getestet. Erster Zusammenhang weist eine geringe Steigung auf, der zweite eine deutlich höhere, wodurch höhere Bodenabsenkungen ausgeglichen werden können. Allerdings können nur noch kleine Bodenanhebungen
 +stabilisiert werden. Sogar für die ursprüngliche Loslasshöhe von 1,05 m, was im Apex einer Bodenanhebung von 0,11 m entspricht, ist diese Interpolation nicht stabil. Daher wird zusätzlich eine Anpassung des Gains
 +gesucht, die im Bereich kleiner Bodenhöhenvariationen kleine Steigungen aufweist, im Bereich großer
 +Variationen aber zu großen Änderungen von $G_{\text{F}}$ ​ führt. Dies kann durch einen exponentiellen Zusammenhang erfüllt werden.\\
 +\\
 +====Ergebnisse der adaptiven Einstellung====
 +[{{ :​abschlussarbeiten:​msc:​adaptive_gains.png?​350|Abb. 6: Stabilisierte Bodenhöhenänderungen bei verschiedenen Anpassungsstrategien von FFB-Gains in
 +Abhängigkeit von der Flugphasenzeit. Rot kennzeichnet eine Bodenerhöhung,​ blau eine
 +Bodenabsenkung.}}]
 +Während die zweite lineare Interpolation sehr hohe Bodenabsenkungen toleriert, ändert die erste lineare
 +Anpassung des Gains den Stabilitätsbereich kaum (Abbildung 6). Beide Anpassungsstrategien führen
 +zu einer verringerten Robustheit gegenüber Bodenanhebungen,​ wobei dieser Effekt für die zweite Interpolation
 +stärker ist. Die exponentielle Anpassung stabilisiert Bodenanhebungen in ähnlichem Maße wie
 +die erste lineare Interpolation,​ während die Robustheit gegenüber Bodenabsenkungen größer ist, aber
 +kleiner als die der zweiten linearen Interpolation.\\
 + 
 +Mit den getesteten Anpassungen von $G_{\text{F}}$ können im gestörten Sprung höhere Steifigkeiten erreicht
 +werden (Abbildung 7). Die größte Änderung ist für die zweite lineare Anpassung in Abhängigkeit
 +von der Fallhöhe zu beobachten, während die erste lineare Interpolation die Steifigkeit nur geringfügig
 +erhöht.\\
  
-Bei der Youtube Einbindung müsst ihr beachten, dass ihr nur einen Teil des originalen Links benötigt. \\  +[{{:​abschlussarbeiten:​msc:​adaptiv_steifigkeit.png?​350|Abb. 7: Vergleich ​der Gesamtbeinsteifigkeit bei konstanter Einstellung des FFB-Gains gegenüber den linearen und der exponentiellen Anpassungen bei einer Bodenabsenkung von 25mm im vierten gezeigten Sprung.}}] 
-Im folgenden Abschnitt haben wir das mal verdeutlicht.+====Diskussion der adaptiven Einstellung der Reflexparameter==== 
 +Es konnte gezeigt werden, dass eine adaptive Gainanpassung ​des FFB während eines jeden Sprungs den Lösungsbereich 
 +stabiler Hüpfmuster gegenüber konstanten Feedbacks für Bodenabsenkungen erhöht. Sowohl mit den zwei linearen als auch mit dem exponentiellen Zusammenhang 
 +zwischen $G_{\text{F}}$ und der Fallhöhe, die während der Simulation durch die Flugzeit bestimmt wird, kann eine 
 +Vergrößerung des Stabilitätsbereichs erzielt werden. Dies geht allerdings mit einer Verringerung des 
 +stabilen Bereichs für Bodenanhebungen einher.\\ 
 +Durch die exponentielle und die linearen Anpassungen des $G_{\text{F}}$ konnte bei Bodenabsenkungen,​ wie erwartet, 
 +die Beinsteifigkeit erhöht werden. Da auch die Literatur eine aufgabenabhängige Gainanpassung 
 +unterstützt (Prochazka, Gillard und Bennett,​1997),​ ist eine Anpassung der Gains zur Erhöhung der Steifigkeit und damit ein höheres 
 +Maß zur Dissipation der Energie denkbar, um hierdurch eine größere Stabilität zu erreichen.
  
-<​code>​ 
-Original-Link:​ https://​www.youtube.com/​watch?​v=CuVB8YpQlYQ 
  
-Syntax für Youtube Video {{ youtube>​large:​Teil-URL| Titel }} 
- 
-Einbindung ins Wiki {{ youtube>​large:​CuVB8YpQlYQ|by Slo Mo Guys }} 
- 
-</​code>​ 
- 
-Oder kleine Anmerkungen einzufügen:​ 
- 
-<​note>​ 
-Notiz 1 
-</​note>​ 
- 
-<note tip> 
-Tipp 1 
-</​note>​ 
- 
-<note important>​ 
-Achtung 1 
-</​note>​ 
-===== Inhalt2 ===== 
-Hier werden weitere theoretische Hintergründe aufgearbeitet,​ z.B. aufbauend oder ergänzend zum Abschnitt //​Inhalt1//​. 
- 
-Verwendete Blockzitate (mehr als 40 Worte) werden dabei wie folgt formatiert: \\ 
-Beispielsweise beschreibt Hermann (2001) die Konsequenzen von Verletzungen für Leistungssportler wie folgt: \\ 
->Für Leistungssportler . . . bedeuten Verletzungen oftmals einen tiefen Ein-schnitt in den Lebensrhythmus mit unklaren Konsequenzen für die weitere körperliche Leistungsfähigkeit und – damit verbunden – für die weitere sportli-che Entwicklung. Je nach individueller Bedeutung des Sports und der Schwere der Läsion können diese Verletzungen mit deutlichen bis massiven psychischen Problemen behaftet sein und für Professionals noch zusätzlich monetär existenzielle Folgen haben. (S. 5)<​html><​br></​html>​ 
-Andere Zitationsweisen finden sich hier: [[http://​www.sport.tu-darmstadt.de/​media/​institut_fuer_sportwissenschaften_1/​aktuelles/​inhalte/​Studienleitfaden_des_IfS_Version30.pdf|Studienleitfaden]] 
- 
-\\ \\ 
- 
-==== Tabellen ==== 
- 
-Um wiederkehrende Fragen nach der Beschriftung von Tabellen vorzubeugen wird in diesem Abschnitt ein Beispiel gegeben, wie eine Tabelle nach den Zitationsrichtlinien des IFS (vgl. [[http://​www.sport.tu-darmstadt.de/​media/​institut_fuer_sportwissenschaften_1/​aktuelles/​inhalte/​Studienleitfaden_des_IfS_Version30.pdf|Studienleitfaden]]) aussehen könnte: 
- 
-| Tabelle 1: Beispiel für Tabellenüberschrift (Autor, Jahr, Seite) ​                      ||| 
-^ Name                                                              ^ Alter     ^ Gewicht ​ ^ 
-| Mustermann ​                                                       | 23 Jahre  | 58kg     | 
- 
-\\ \\ 
  
 ===== Zusammenfassung und Ausblick ===== ===== Zusammenfassung und Ausblick =====
Zeile 329: Zeile 290:
  
 Im letzten Teil konnte gezeigt werden, dass durch lineare Gainanpassung des FFB, die Verringerung der Steifigkeit im gestörten Sprung vermindert und damit auch die Robustheit bei Bodenabsenkungen erhöht werden konnte. Dafür wurden zwei lineare Interpolationen zwischen Gain und Fallhöhe getestet, eine mit kleinen Bodenabsenkungen als Stützstelle,​ die zweite mit einer kleinen und einer großen Bodenabsenkung. Im letzten Teil konnte gezeigt werden, dass durch lineare Gainanpassung des FFB, die Verringerung der Steifigkeit im gestörten Sprung vermindert und damit auch die Robustheit bei Bodenabsenkungen erhöht werden konnte. Dafür wurden zwei lineare Interpolationen zwischen Gain und Fallhöhe getestet, eine mit kleinen Bodenabsenkungen als Stützstelle,​ die zweite mit einer kleinen und einer großen Bodenabsenkung.
-Beide getesteten Interpolationen konnten Bodenanhebungen nur noch im geringerem Maße stabilisieren als dies bei einer konstante Feedbackverstärkung der Fall war. Mit einer exponentiellen Regression konnten die Vorteile der beiden linearen Interpolation teilweise kombiniert werden, sodass Bodenanhebungen wie für die erste lineare Interpolation und Bodenabsenkungen im ähnlich großen Maß wie bei der zweiten Variante der linearen Interpolation stabilisiert werden konnten. Durch diese einfachen Anpassungen des Gains an die Fallhöhe bzw. Flugzeit ließ sich das menschliche Verhalten bei Bodenabsenkungen bereits besser abbilden. Abweichungen zu den experimentellen Ergebnissen bestehen aber nach wie vor.  +Beide getesteten Interpolationen konnten Bodenanhebungen nur noch im geringerem Maße stabilisieren als dies bei einer konstante Feedbackverstärkung der Fall war. Mit einer exponentiellen Regression konnten die Vorteile der beiden linearen Interpolation teilweise kombiniert werden, sodass Bodenanhebungen wie für die erste lineare Interpolation und Bodenabsenkungen im ähnlich großen Maß wie bei der zweiten Variante der linearen Interpolation stabilisiert werden konnten. Durch diese einfachen Anpassungen des Gains an die Fallhöhe bzw. Flugzeit ließ sich das menschliche Verhalten bei Bodenabsenkungen bereits besser abbilden. Abweichungen zu den experimentellen Ergebnissen bestehen aber nach wie vor.
-Da die Ergebnisse jedoch stark davon abhingen, welche Stützstellen gewählt wurden, wurde zusätzlich ein Verfahren des Reinforcement Learnings implementiert,​ welches selbstständig die Gains an den aktuellen Status des Modells anpasst. Dieses Modell konnte zum Schwingen stabilisiert werden, Hüpfen konnte allerdings nur in einzelnen Samples beobachtet werden, sodass eine Auswertung der Robustheit nicht möglich ist.\\+
  
-Es sollten weitere Modifikationen des Lernverfahrens getestet werden, wie eine andere Definition des Status, eine höhere Anzahl der Samples zum Annähern an den Gradienten oder eine andere Verteilungsfunktion der upper-level policy. \\ 
-Denkbar ist außerdem die Wahl eines anderen Lernverfahrens,​ z. B. Natural gradients, die die Änderung der Parameter der upper-level policy einschränkt. Dabei wird statt einer festen Lernrate für alle Dimensionen der upper-level policy eine unterschiedliche Gewichtung derer vorgenommen,​ sodass diese in unterschiedlich großen Schrittweiten angepasst werden. 
  
 ===== Literatur ===== ===== Literatur =====
  
-[1] ALEXANDER, R M.: Optimum muscle design for oscillatory movements. In: Journal of theoretical +BLUM, Yvonne ; RUMMEL, Juergen ; SEYFARTH, Andre: Advanced swing leg control for stable locomotion.
-Biology 184 (1997), Nr. 3, S. 253–259\\ +
-\\ +
-[2] BEAR, Mark F. ; CONNORS, Barry W. ; ENGEL, Andreas: Neurowissenschaften:​ Ein grundlegendes Lehrbuch +
-für Biologie, Medizin und Psychologie. 3. Spektrum Akademischer Verlag, 2009. – ISBN +
-978-3-8274-2028-2\\ +
-\\ +
-[3] BISHOP, Christopher M. u. a.: Pattern recognition and machine learning (information science and +
-statistics). (2006)\\ +
-\\ +
-[4] BLUM, Yvonne ; RUMMEL, Juergen ; SEYFARTH, Andre: Advanced swing leg control for stable locomotion.+
 In: Autonome Mobile Systeme 2007. Springer, 2007, S. 301–307\\ In: Autonome Mobile Systeme 2007. Springer, 2007, S. 301–307\\
 \\ \\
-[5] CAMPBELL, Neil A. ; REECE, Jane B.: Biologie. 2009\\ + DALEY, Monica A. ; BIEWENER, Andrew A.: Running over rough terrain reveals limb control for
-\\ +
-[6] CAVAGNA, GA ; SAIBENE, FP ; MARGARIA, R: Mechanical work in running. In: Journal of applied +
-physiology 19 (1964), Nr. 2, S. 249–256\\ +
-\\ +
-[7] CRAIG, John J.: Introduction to robotics: mechanics and control. Bd. 3. Pearson/​Prentice Hall Upper +
-Saddle River, NJ, USA:, 2005\\ +
-\\ +
-[8] DALEY, Monica A. ; BIEWENER, Andrew A.: Running over rough terrain reveals limb control for+
 intrinsic stability. In: Proceedings of the National Academy of Sciences 103 (2006), Nr. 42, S. 15681– intrinsic stability. In: Proceedings of the National Academy of Sciences 103 (2006), Nr. 42, S. 15681–
 15686\\ 15686\\
 \\ \\
-[9] DEAN, Jesse C.: Proprioceptive feedback and preferred patterns of human movement. In: Exercise + DONELAN, J M. ; KRAM, Rodger u. a.: Mechanical and metabolic determinants of the preferred step
-and sport sciences reviews 41 (2013), Nr. 1, S. 36–43\\ +
-\\ +
-[10] DEISENROTH, Marc ; RASMUSSEN, Carl E.: PILCO: A model-based and data-efficient approach to +
-policy search. In: Proceedings of the 28th International Conference on machine learning (ICML-11),​ +
-2011, S. 465–472\\ +
-\\ +
-[11] DEISENROTH, Marc P. ; NEUMANN, Gerhard ; PETERS, Jan u. a.: A survey on policy search for robotics. +
-In: Foundations and Trends® in Robotics 2 (2013), Nr. 1–2, S. 1–142\\ +
-\\ +
-[12] DIETZ, V ; SCHMIDTBLEICHER,​ D ; NOTH, J: Neuronal mechanisms of human locomotion. In: journal +
-of Neurophysiology 42 (1979), Nr. 5, S. 1212–1222\\ +
-\\ +
-[13] DIETZ, Volker: Proprioception and locomotor disorders. In: Nature Reviews Neuroscience 3 (2002), +
-Nr. 10, S. 781\\ +
-\\ +
-[14] DONELAN, J M. ; KRAM, Rodger u. a.: Mechanical and metabolic determinants of the preferred step+
 width in human walking. In: Proceedings of the Royal Society of London B: Biological Sciences 268 width in human walking. In: Proceedings of the Royal Society of London B: Biological Sciences 268
 (2001), Nr. 1480, S. 1985–1992\\ (2001), Nr. 1480, S. 1985–1992\\
-\\ 
-DÖRGE, Henrik C. ; ANDERSEN, T B. ; SØRENSEN, Henrik ; SIMONSEN, Erik B.: Biomechanical differences 
-in soccer kicking with the preferred and the non-preferred leg. In: Journal of sports sciences 
-20 (2002), Nr. 4, S. 293–299\\ 
-\\ 
-[16] ERTEL, Wolfgang: Grundkurs Künstliche Intelligenz. In: Auflage, Wiesbaden (2009) 
-68\\ 
-\\ 
-[17] FAISAL, A A. ; SELEN, Luc P. ; WOLPERT, Daniel M.: Noise in the nervous system. In: Nature reviews 
-neuroscience 9 (2008), Nr. 4, S. 292\\ 
-\\ 
-[18] FARLEY, Claire T. ; BLICKHAN, Reinhard ; SAITO, Jacqueline ; TAYLOR, C R.: Hopping frequency in humans: 
-a test of how springs set stride frequency in bouncing gaits. In: Journal of applied physiology 
-71 (1991), Nr. 6, S. 2127–2132\\ 
 \\ \\
 FARLEY, Claire T. ; MORGENROTH, David C.: Leg stiffness primarily depends on ankle stiffness during FARLEY, Claire T. ; MORGENROTH, David C.: Leg stiffness primarily depends on ankle stiffness during
Zeile 402: Zeile 312:
 hopping. In: Journal of applied physiology 82 (1997), Nr. 1, S. 15–22\\ hopping. In: Journal of applied physiology 82 (1997), Nr. 1, S. 15–22\\
 \\ \\
-[21] FERRIS, Daniel P. ; LOUIE, Micky ; FARLEY, Claire T.: Running in the real world: adjusting leg stiffness+ FERRIS, Daniel P. ; LOUIE, Micky ; FARLEY, Claire T.: Running in the real world: adjusting leg stiffness
 for different surfaces. In: Proceedings of the Royal Society of London B: Biological Sciences 265 for different surfaces. In: Proceedings of the Royal Society of London B: Biological Sciences 265
 (1998), Nr. 1400, S. 989–994\\ (1998), Nr. 1400, S. 989–994\\
-\\ 
-[22] FULL, Robert J. ; KODITSCHEK, Daniel E.: Templates and anchors: neuromechanical hypotheses of 
-legged locomotion on land. In: Journal of experimental biology 202 (1999), Nr. 23, S. 3325–3332\\ 
 \\ \\
 GEYER, Hartmut: Simple models of legged locomotion based on compliant limb behavior= Grundmodelle GEYER, Hartmut: Simple models of legged locomotion based on compliant limb behavior= Grundmodelle
Zeile 415: Zeile 322:
 In: Proceedings of the Royal Society of London B: Biological Sciences 270 (2003), Nr. 1529, S. 2173– In: Proceedings of the Royal Society of London B: Biological Sciences 270 (2003), Nr. 1529, S. 2173–
 2183\\ 2183\\
-\\ 
-[25] GRIMMER, Sten ; ERNST, Michael ; GÜNTHER, Michael ; BLICKHAN, Reinhard: Running on uneven 
-ground: leg adjustment to vertical steps and self-stability. In: Journal of Experimental Biology 211 
-(2008), Nr. 18, S. 2989–3000\\ 
 \\ \\
 GURNEY, Burke: Leg length discrepancy. In: Gait & posture 15 (2002), Nr. 2, S. 195–206\\ GURNEY, Burke: Leg length discrepancy. In: Gait & posture 15 (2002), Nr. 2, S. 195–206\\
 \\ \\
-[27] HÄUFLE, DFB ; GRIMMER, S ; KALVERAM, K-T ; SEYFARTH, A: Integration of intrinsic muscle properties,​ +
-feed-forward and feedback signals for generating and stabilizing hopping. In: Journal of The Royal +
-Society Interface 9 (2012), Nr. 72, S. 1458–1469\\ +
-\\+
 HÄUFLE, DFB ; GRIMMER, Sten ; SEYFARTH, Andre: The role of intrinsic muscle properties for stable HÄUFLE, DFB ; GRIMMER, Sten ; SEYFARTH, Andre: The role of intrinsic muscle properties for stable
 hopping–stability is achieved by the force-velocity relation. In: Bioinspiration & biomimetics 5 hopping–stability is achieved by the force-velocity relation. In: Bioinspiration & biomimetics 5
 (2010), Nr. 1, S. 016004\\ (2010), Nr. 1, S. 016004\\
-\\ 
-[29] HATZFELD, Christian: Experimentelle Analyse der menschlichen Kraftwahrnehmung als ingenieurtechnische 
-Entwurfsgrundlage für haptische Systeme. Dr.-Hut-Verlag,​ 2013\\ 
-\\ 
-[30] HERZOG, WALTER ; NIGG, BENNO M. ; READ, LYNDA J. ; OLSSON, EWA: Asymmetries in ground 
-reaction force patterns in normal human gait. In: Med Sci Sports Exerc 21 (1989), Nr. 1, S. 110– 
-114\\ 
-\\ 
-[31] HILL, A V.: The heat of shortening and the dynamic constants of muscle. In: Proc. R. Soc. Lond. B 
-126 (1938), Nr. 843\\ 
 \\ \\
 HORTOBÁGYI,​ Tibor ; DEVITA, Paul: Muscle pre-and coactivity during downward stepping are associated HORTOBÁGYI,​ Tibor ; DEVITA, Paul: Muscle pre-and coactivity during downward stepping are associated
Zeile 444: Zeile 334:
 S. 117–126\\ S. 117–126\\
 \\ \\
-[33] KNUDSON, Duane u. a.: The biomechanics of stretching. In: Journal of Exercise Science and Physiotherapy +
-2 (2006), S. 3\\ +
-\\ +
-[34] KOBER, Jens ; BAGNELL, J A. ; PETERS, Jan: Reinforcement learning in robotics: A survey. In: The +
-International Journal of Robotics Research 32 (2013), Nr. 11, S. 1238–1274\\ +
-\\+
 KRISHNASWAMY,​ Pavitra ; BROWN, Emery N. ; HERR, Hugh M.: Human leg model predicts ankle KRISHNASWAMY,​ Pavitra ; BROWN, Emery N. ; HERR, Hugh M.: Human leg model predicts ankle
 muscle-tendon morphology, state, roles and energetics in walking. In: PLoS computational biology muscle-tendon morphology, state, roles and energetics in walking. In: PLoS computational biology
 7 (2011), Nr. 3, S. e1001107\\ 7 (2011), Nr. 3, S. e1001107\\
 \\ \\
-[36] KUO, Arthur D.: An optimal state estimation model of sensory integration in human postural balance. + MCNEILL ALEXANDER, R: Energetics and optimization of human walking and running: the 2000
-In: Journal of Neural Engineering 2 (2005), Nr. 3, S. S235\\ +
-\\ +
-[37] LANG, Florian ; LANG, Philipp: Basiswissen Physiologie. 2. Springer-Verlag,​ 2007. – ISBN 978-3-540- +
-71402-6\\ +
-\\ +
-[38] LANTZ, Brett: Machine learning with R. Packt Publishing Ltd, 2013\\ +
-\\ +
-[39] MCDONAGH, Martin J. ; DUNCAN, Audrey: Interaction of pre-programmed control and natural stretch +
-reflexes in human landing movements. In: The Journal of physiology 544 (2002), Nr. 3, S. 985–994\\ +
-\\ +
-[40] MCNEILL ALEXANDER, R: Energetics and optimization of human walking and running: the 2000+
 Raymond Pearl memorial lecture. In: American journal of human biology 14 (2002), Nr. 5, S. 641– Raymond Pearl memorial lecture. In: American journal of human biology 14 (2002), Nr. 5, S. 641–
 648\\ 648\\
Zeile 476: Zeile 350:
 Bioinspiration & biomimetics 6 (2011), Nr. 4\\ Bioinspiration & biomimetics 6 (2011), Nr. 4\\
 \\ \\
-[43] MORITZ, Chet T. ; FARLEY, Claire T.: Passive dynamics change leg mechanics for an unexpected+MORITZ, Chet T. ; FARLEY, Claire T.: Passive dynamics change leg mechanics for an unexpected
 surface during human hopping. In: Journal of Applied Physiology 97 (2004), Nr. 4, S. 1313–1322\\ surface during human hopping. In: Journal of Applied Physiology 97 (2004), Nr. 4, S. 1313–1322\\
 \\ \\
-[44] MÜLLER, Roy ; BLICKHAN, Reinhard: Running on uneven ground: leg adjustments to altered ground+ MÜLLER, Roy ; BLICKHAN, Reinhard: Running on uneven ground: leg adjustments to altered ground
 level. In: Human movement science 29 (2010), Nr. 4, S. 578–589\\ level. In: Human movement science 29 (2010), Nr. 4, S. 578–589\\
-\\ 
-[45] PERTTUNEN, JR ; ANTTILA, E ; SÖDERGÅRD,​ J ; MERIKANTO, J ; KOMI, PV: Gait asymmetry in patients 
-with limb length discrepancy. In: Scandinavian journal of medicine & science in sports 14 (2004), 
-Nr. 1, S. 49–56\\ 
-\\ 
-[46] PETERSEN, Kaare B. ; PEDERSEN, Michael S. u. a.: The matrix cookbook. In: Technical University of 
-Denmark 7 (2008), Nr. 15, S. 510\\ 
 \\ \\
 PROCHAZKA, Arthur ; ELLAWAY, Peter: Sensory systems in the control of movement. In: Comprehensive PROCHAZKA, Arthur ; ELLAWAY, Peter: Sensory systems in the control of movement. In: Comprehensive
 Physiology (2012)\\ Physiology (2012)\\
 \\ \\
-[48] PROCHAZKA, Arthur ; GILLARD, Deborah ; BENNETT, David J.: Implications of positive feedback in the+PROCHAZKA, Arthur ; GILLARD, Deborah ; BENNETT, David J.: Implications of positive feedback in the
 control of movement. In: Journal of neurophysiology 77 (1997), Nr. 6, S. 3237–3251\\ control of movement. In: Journal of neurophysiology 77 (1997), Nr. 6, S. 3237–3251\\
-\\ 
-[49] REID, DC ; SMITH, B: Leg length inequality: a review of etiology and management. In: Physiotherapy 
-Canada 36 (1984), Nr. 4, S. 177–182\\ 
-\\ 
-[50] ROBERTSON, Benjamin D. ; SAWICKI, Gregory S.: Exploiting elasticity: Modeling the influence of 
-neural control on mechanics and energetics of ankle muscle–tendons during human hopping. In: 
-Journal of theoretical biology 353 (2014), S. 121–132\\ 
-\\ 
-[51] ROTTMANN, Oswald ; HÖFER, Paul: Lexikon Biologie: Fachbegriffe der Biologie. Stark, 2002 
-70\\ 
-\\ 
-[52] RÜCKSTIESS,​ Thomas ; SEHNKE, Frank ; SCHAUL, Tom ; WIERSTRA, Daan ; SUN, Yi ; SCHMIDHUBER,​ 
-Jürgen: Exploring parameter space in reinforcement learning. In: Paladyn 1 (2010), Nr. 1, S. 14– 
-24\\ 
-\\ 
-[53] SANTELLO, Marco ; MCDONAGH, Martin: The control of timing and amplitude of EMG activity in 
-landing movements in humans. In: Experimental Physiology 83 (1998), Nr. 6, S. 857–874\\ 
-\\ 
-[54] SCHMIDT, Robert F. ; LANG, Florian ; HECKMANN, Manfred: Physiologie des Menschen: mit Pathophysiologie. 
-29. Springer-Verlag,​ 2005. – ISBN 978-3-540-26416-3\\ 
 \\ \\
 SCHUMACHER, Christian ; SEYFARTH, André: Sensor-Motor Maps for describing linear reflex composition SCHUMACHER, Christian ; SEYFARTH, André: Sensor-Motor Maps for describing linear reflex composition
 in hopping. In: Frontiers in computational neuroscience 11 (2017)\\ in hopping. In: Frontiers in computational neuroscience 11 (2017)\\
 \\ \\
-[56] SCHUMACHER, Christian ; SEYFARTH, André: Sensor-motor maps for hopping – influence of changes +WOLPERT, Daniel M. ; FLANAGAN, J R.: Motor prediction. In: Current biology 11 (2001), Nr. 18,
-in muscle properties. In: Bernstein Conference 2017 (2017)\\ +
-\\ +
-[57] SEHNKE, Frank ; OSENDORFER, Christian ; RÜCKSTIESS,​ Thomas ; GRAVES, Alex ; PETERS, Jan ; SCHMIDHUBER,​ +
-Jürgen: Parameter-exploring policy gradients. In: Neural Networks 23 (2010), Nr. 4, S. 551– +
-559\\ +
-\\ +
-[58] SEYFARTH, A ; BLICKHAN, Reinhard ; VAN LEEUWEN, JL: Optimum take-off techniques and muscle +
-design for long jump. In: Journal of Experimental Biology 203 (2000), Nr. 4, S. 741–750\\ +
-\\ +
-STATISTISCHES BUNDESAMT: Fallpauschalenbezogene Krankenhausstatistik (DRG-Statistik) Operationen +
-und Prozeduren der vollstationären Patientinnen und Patienten in Krankenhäusern - Ausführliche +
-Darstellung -, Statistisches Bundesamt, 2017\\ +
-\\ +
-[60] SUN, Yi ; WIERSTRA, Daan ; SCHAUL, Tom ; SCHMIDHUBER,​ Juergen: Efficient natural evolution strategies. +
-In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation ACM +
-(Veranst.), 2009, S. 539–546\\ +
-\\ +
-[61] SUTTON, Richard S. ; BARTO, Andrew G.: Reinforcement learning: An introduction. Bd. 2. MIT press +
-Cambridge, 2018\\ +
-\\ +
-[62] VAN DER KROGT, Marjolein M. ; DE GRAAF,​WendyW. ; FARLEY, Claire T. ;MORITZ, Chet T. ; RICHARD CASIUS, +
-LJ ; BOBBERT, Maarten F.: Robust passive dynamics of the musculoskeletal system compensate +
-for unexpected surface changes during human hopping. In: Journal of Applied Physiology 107 +
-(2009), Nr. 3, S. 801–808\\ +
-\\ +
-[63] WOLPERT, Daniel M. ; FLANAGAN, J R.: Motor prediction. In: Current biology 11 (2001), Nr. 18,+
 S. R729–R732\\ S. R729–R732\\
 \\ \\
-[64] ZEHR, E P.: Training-induced adaptive plasticity in human somatosensory reflex pathways. In: 
-Journal of applied physiology 101 (2006), Nr. 6, S. 1783–1794\\ 
-\\ 
-[65] ZUUR, Abraham T. ; LUNDBYE-JENSEN,​ Jesper ; LEUKEL, Christian ; TAUBE,​Wolfgang ; GREY, Michael J. ; 
-GOLLHOFER, Albert ; NIELSEN, Jens B. ; GRUBER, Markus: Contribution of afferent feedback and 
-descending drive to human hopping. In: The Journal of physiology 588 (2010), Nr. 5, S. 799–807 
- 
 \\ \\
 \\ \\
abschlussarbeiten/msc/dorschsarah.1535976662.txt.gz · Zuletzt geändert: 03.09.2018 14:11 von Sarah Dorsch
GNU Free Documentation License 1.3
Driven by DokuWiki Recent changes RSS feed Valid CSS Valid XHTML 1.0