Welcome to the ANSYMB III Wiki

Welcome to the teaching project “Analyse und Synthese Menschlicher Bewegungen” (ANSYMB). Below is a general description of the teaching project. If you are looking for detailed information of the teaching modules click here.

Analysis and Synthesis of Human Movements

From basics of human science to practical applications.

This teaching project aims at bringing students into contact with interdisciplinary methods of measuring and processing human movement data as well as the technical implementation of different locomotion tasks (e.g., robotics or prosthetics). The modules are relevant for a variety of students, but especially for students from sport science, psychology, mechanical engineering, electrical engineering or computer science.

Teaching content comprises

  • Collection and analysis of motion data by different measuring techniques (e.g., electromyography, dynamometry, kinematics, isokinetics, psychomotoric measurements and spiroergometry): The gained knowledge will be used in practical applications. By this, specific properties and limitations of different measuring techniques will be identified.
  • Programming and signal analysis with Matlab: students learn how to process and analyze raw data (e.g., identification of measurement errors)
  • Integrative modeling of biological systems (e.g., basic muscle models, bipedal walking models) in Matlab: students learn to explore the influence of different model parameters on the motion execution by designing and using simulation models.
  • Control approaches of robotic systems: students learn to implement basic control algorithms in simulation systems.
  • Introduction to mechatronic systems: Design and Implementation of actuators, sensors and control platforms (e.g., Arduino, Matlab etc.).
  • Application of the gained knowledge on simple and modifiable bipedal robots: students can test and validate their programmes and hypotheses to gain a comprehensive understanding of the biological movements and the capabilities of hardware implementations.
  • Integration of motion principles in advanced robotic systems (e.g., active prostheses): students learn aspects of prosthetic design, simulation of control approaches and their implementation in available systems (e.g., SpringActive „Odyssey“ Prothese, Össur „Power Knee“).

Project Partners

Lauflabor Locomotion Lab

Institute of Sports Science

Prof. André Seyfarth

Psychology of Information Processing

Department of Psychology

Prof. Constantin Rothkopf

Intelligent Autonomous Systems

Computer Science Department

Prof. Jan Peters

ansymb_iii.txt · Zuletzt geändert: 01.05.2018 14:14 von Rustam Galljamov
GNU Free Documentation License 1.3
Driven by DokuWiki Recent changes RSS feed Valid CSS Valid XHTML 1.0